Pareto-Optimal Multi-objective Inversion of Geophysical Data

In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.

[1]  Peter G. Lelièvre,et al.  A study of fuzzy c-means coupling for joint inversion, using seismic tomography and gravity data test scenarios , 2015 .

[2]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[3]  A. Roberts,et al.  A framework for 3-D joint inversion of MT, gravity and seismic refraction data , 2011 .

[4]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[5]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .

[6]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[7]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[8]  J. Wait On the relation between telluric currents and the Earth's magnetic field , 1954 .

[9]  V. Pareto,et al.  Vilfredo Pareto. Cours d’Économie Politique , 1897 .

[10]  M. Moorkamp,et al.  Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: Are seismic velocities and electrical conductivities compatible? , 2007 .

[11]  A. T. Basokur,et al.  Joint parameter estimation from magnetic resonance and vertical electric soundings using a multi‐objective genetic algorithm , 2014 .

[12]  H. Theil A Rank-Invariant Method of Linear and Polynomial Regression Analysis , 1992 .

[13]  E. Haber,et al.  Joint inversion: a structural approach , 1997 .

[14]  Ettore Cardarelli,et al.  Quasi 2D Hybrid Joint Inversion of Seismic and Geoelectric Data , 1999 .

[15]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[16]  Joseph W. McKean,et al.  Robust Analysis of Linear Models , 2004 .

[17]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[18]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble , 1999 .

[19]  Marco Laumanns,et al.  Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions , 2004, IEEE Transactions on Evolutionary Computation.

[20]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[21]  Alan G. Jones,et al.  Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data , 2010 .

[22]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[23]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.

[24]  Chieh hyphen Yang,et al.  Joint Inversion of DC, TEM, And MT Data , 1988 .

[25]  Aria Abubakar,et al.  Joint MT and CSEM data inversion using a multiplicative cost function approach , 2011 .

[26]  Mohammad Emami Niri,et al.  Simultaneous optimization of multiple objective functions for reservoir modeling , 2015 .

[27]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[28]  Fernando A. Monteiro Santos,et al.  Magnetotelluric inversion for anisotropic conductivities in layered media , 2006 .

[29]  F. Y. Edgeworth Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences , 2007 .

[30]  Max A. Meju,et al.  Joint two‐dimensional cross‐gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification , 2007 .

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Rogério Pinto Mota,et al.  2D sections of porosity and water saturation percent from combined resistivity and seismic surveys for hydrogeologic studies , 2006 .

[33]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[34]  E. Kozlovskaya,et al.  Joint inversion of multiple data types with the use of multiobjective optimization: problem formulation and application to the seismic anisotropy investigations , 2007 .

[35]  Volker Rath,et al.  Beyond smooth inversion: the use of nullspace projection for the exploration of non-uniqueness in MT , 2006 .

[36]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[37]  Michele De Stefano,et al.  Multiple-domain, simultaneous joint inversion of geophysical data with application to subsalt imaging , 2011 .

[38]  Mrinal K. Sen,et al.  Nonlinear multiparameter optimization using genetic algorithms; inversion of plane-wave seismograms , 1991 .

[39]  Charles J. Ammon,et al.  Lithospheric Structure of the Arabian Shield from the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations , 2000 .

[40]  Hisao Ishibuchi,et al.  Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems , 2008, GECCO '08.

[41]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[42]  Thomas Hanne,et al.  On the convergence of multiobjective evolutionary algorithms , 1999, Eur. J. Oper. Res..

[43]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[44]  Sven Treitel,et al.  Past, present and future of geophysical inversion - a Y2K analysis , 1999 .

[45]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[46]  Shigenobu Kobayashi,et al.  Multi-Parental Extension of the Unimodal Normal Distribution Crossover for Real-Coded Genetic Algorithms , 2000 .

[47]  Alan D. Chave,et al.  Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints , 2009 .

[48]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[49]  K. Deb,et al.  Real-coded evolutionary algorithms with parent-centric recombination , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[50]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[51]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[52]  M. Yamamura,et al.  Multi-parent recombination with simplex crossover in real coded genetic algorithms , 1999 .

[53]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[54]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[55]  Michael Commer,et al.  Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion , 2009 .

[56]  Dal Moro Giancarlo Insights on surface wave dispersion and HVSR: Joint analysis via Pareto optimality , 2010 .

[57]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[58]  H. Paasche,et al.  Nonlinear joint inversion of tomographic data using swarm intelligence , 2014 .

[59]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[60]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[61]  L. Dresen,et al.  JOINT INVERSION OF SEISMIC AND GEOELECTRIC DATA RECORDED IN AN UNDERGROUND COAL MINE1 , 1991 .

[62]  M. Meju,et al.  Characterization of heterogeneous near‐surface materials by joint 2D inversion of dc resistivity and seismic data , 2003 .

[63]  Masayuki Yamamura,et al.  Theoretical Analysis of Simplex Crossover for Real-Coded Genetic Algorithms , 2000, PPSN.