Hole mobility and Poole‐Frenkel effect in CdTe

We have performed, with the time‐of‐flight technique, an extensive investigation of the transport properties of holes in high‐resistivity CdTe as a function of temperature between 130 and 430 °K and for electric fields between 5 kV/cm and 50 kV/cm. In all investigated samples, at temperatures below 300 °K, the experimental hole mobility decreases on lowering either the temperature or the electric field. These features have been interpreted on the basis of the electric field effect on trapping and detrapping phenomena (Poole‐Frenkel effect) which cause a reduction of the mobility. A critical review of the existing theories of the Poole‐Frenkel effect is presented. The Poole‐Frenkel constant obtained by comparing the experimental data with the most reliable theories of the Poole‐Frenkel effect is in excellent agreement with its theoretical value. By analysis of the experimental data it was also possible to estimate the activation energy (Et=0.14 eV) and the concentration (NT=5×1016 cm−3) of the traps which ...

[1]  John G. Simmons,et al.  Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems , 1967 .

[2]  C. Canali,et al.  Hole Drift Velocity in Semi‐Insulating CdTe , 1971 .

[3]  M. Martini,et al.  FIELD‐ASSISTED REEMISSION OF CHARGE CARRIERS FROM SHALLOW IMPURITY CENTERS IN GERMANIUM , 1970 .

[4]  G. S. Kino,et al.  Transport Properties of GaAs , 1968 .

[5]  W. Spear,et al.  Drift mobility techniques for the study of electrical transport properties in insulating solids , 1969 .

[6]  G. G. Wepfer,et al.  Calculated Spin-Orbit Splittings of Some Group IV, III-V, and II-VI Semiconductors , 1971 .

[7]  J. L. Hartke The Three‐Dimensional Poole‐Frenkel Effect , 1968 .

[8]  K. Zanio,et al.  Vapor growth of cadmium telluride , 1971 .

[9]  M. Aven,et al.  Physics and chemistry of II-VI compounds , 1967 .

[10]  R. Bube,et al.  Semiconducting Cadmium Telluride , 1954 .

[11]  K. Zanio,et al.  Performance of CdTe as a Gamma Spectrometer and Detector , 1970 .

[12]  C. Canali,et al.  Characterization of high resistivity CdTe for γ-ray detectors , 1971 .

[13]  C. Canali,et al.  Transport Properties of CdTe , 1971 .

[14]  M. Lorenz,et al.  Band edge emission properties of CdTe , 1961 .

[15]  M.A.C.S. Brown Deviations from Ohm's law in germanium and silicon , 1961 .

[16]  R. Bell,et al.  Recent Advances in the Preparation of CdTe for Nuclear Detectors , 1972 .

[17]  A. Jonscher,et al.  Electronic properties of amorphous dielectric films , 1967 .

[18]  C. Jacoboni,et al.  Poole-Frenkel effect on holes in CdTe , 1972 .

[19]  J. R. Yeargan,et al.  The Poole-Frenkel effect with compensation present. , 1968 .

[20]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[21]  William Shockley,et al.  Electrons and Holes in Semiconductors , 1952 .

[22]  K. W. Böer,et al.  Field‐Enhanced Ionization , 1970 .

[23]  H. P. Grunwald,et al.  Trapping processes in amorphous selenium. , 1967 .

[24]  C. Jacoboni,et al.  Negative differential mobility in III–V and II–VI semiconducting compounds , 1971 .

[25]  W. Spitzer,et al.  Infrared Refractive Index and Absorption of InAs and CdTe , 1965 .

[26]  Yamada Shôji On the Electrical and Optical Properties of p-type Cadmium Telluride Crystals , 1960 .

[27]  M. Martini,et al.  Trapping and detrapping effects in lithium-drifted germanium and silicon detectors , 1970 .

[28]  B. Crowder,et al.  Shallow Acceptor States in ZnTe and CdTe , 1966 .

[29]  W. Akutagawa,et al.  Analysis of CdTe Probes , 1972 .

[30]  Masayuki Ieda,et al.  A Consideration of Poole‐Frenkel Effect on Electric Conduction in Insulators , 1971 .

[31]  C. Canali,et al.  A 40 keV Pulsed Electron Accelerator , 1970 .

[32]  E. Conwell High field transport in semiconductors , 1967 .

[33]  N. R. Kyle Growth of Semi‐Insulating Cadmium Telluride , 1971 .

[34]  M. Lorenz,et al.  Shallow and deep acceptor states in CdTe , 1963 .