暂无分享,去创建一个
[1] M. Hofmann,et al. The groupoid interpretation of type theory , 1998 .
[2] Peter LeFanu Lumsdaine,et al. Displayed Categories , 2017, FSCD.
[3] Andrew M. Pitts,et al. Categorical logic , 2001, LICS 2001.
[4] G. M. Kelly,et al. Two-dimensional monad theory , 1989 .
[5] Peter LeFanu Lumsdaine,et al. The simplicial model of Univalent Foundations (after Voevodsky) , 2012, Journal of the European Mathematical Society.
[6] Peter Dybjer,et al. Finitary Higher Inductive Types in the Groupoid Model , 2018, MFPS.
[7] Steven Awodey,et al. Natural models of homotopy type theory , 2014, Mathematical Structures in Computer Science.
[8] Nicolai Kraus,et al. Univalent higher categories via complete Semi-Segal types , 2017, Proc. ACM Program. Lang..
[9] Samuel Mimram,et al. A type-theoretical definition of weak ω-categories , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[10] Tom Leinster,et al. Basic Bicategories , 1998, math/9810017.
[11] Peter Dybjer,et al. The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories , 2014, Math. Struct. Comput. Sci..
[12] J. Benabou. Introduction to bicategories , 1967 .
[13] Vladimir Voevodsky,et al. Categorical structures for type theory in univalent foundations , 2018, Log. Methods Comput. Sci..
[14] Michael Shulman,et al. Univalent categories and the Rezk completion , 2013, Mathematical Structures in Computer Science.
[15] Peter Dybjer,et al. Internal Type Theory , 1995, TYPES.