Bicategories in Univalent Foundations

We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of those, we develop the notion of "displayed bicategories", an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. Displayed bicategories allow us to construct univalent bicategories in a modular fashion. To demonstrate the applicability of this notion, we prove several bicategories are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Our work is formalized in the UniMath library of univalent mathematics.

[1]  M. Hofmann,et al.  The groupoid interpretation of type theory , 1998 .

[2]  Peter LeFanu Lumsdaine,et al.  Displayed Categories , 2017, FSCD.

[3]  Andrew M. Pitts,et al.  Categorical logic , 2001, LICS 2001.

[4]  G. M. Kelly,et al.  Two-dimensional monad theory , 1989 .

[5]  Peter LeFanu Lumsdaine,et al.  The simplicial model of Univalent Foundations (after Voevodsky) , 2012, Journal of the European Mathematical Society.

[6]  Peter Dybjer,et al.  Finitary Higher Inductive Types in the Groupoid Model , 2018, MFPS.

[7]  Steven Awodey,et al.  Natural models of homotopy type theory , 2014, Mathematical Structures in Computer Science.

[8]  Nicolai Kraus,et al.  Univalent higher categories via complete Semi-Segal types , 2017, Proc. ACM Program. Lang..

[9]  Samuel Mimram,et al.  A type-theoretical definition of weak ω-categories , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[10]  Tom Leinster,et al.  Basic Bicategories , 1998, math/9810017.

[11]  Peter Dybjer,et al.  The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theories , 2014, Math. Struct. Comput. Sci..

[12]  J. Benabou Introduction to bicategories , 1967 .

[13]  Vladimir Voevodsky,et al.  Categorical structures for type theory in univalent foundations , 2018, Log. Methods Comput. Sci..

[14]  Michael Shulman,et al.  Univalent categories and the Rezk completion , 2013, Mathematical Structures in Computer Science.

[15]  Peter Dybjer,et al.  Internal Type Theory , 1995, TYPES.