Self-Similar Lattice Tilings and Subdivision Schemes

Let $M \in {\mathbb Z}^{s\times s}$ be a dilation matrix and let ${\cal D} \subset {\mathbb Z}^s$ be a complete set of representatives of distinct cosets of ${\mathbb Z}^s/ M{\mathbb Z}^s$. The self-similar tiling associated with M and ${\cal D}$ is the subset of ${\mathbb R}^s$ given by $T(M, {\cal D})=\{ \sum_{j=1}^\infty M^{-j} \alpha_j: \alpha_j \in {\cal D} \}$. The purpose of this paper is to characterize self-similar lattice tilings, i.e., tilings $T(M, {\cal D})$ which have Lebesgue measure one. In particular, it is shown that $T(M, {\cal D})$ is a lattice tiling if and only if there is no nonempty finite set $\Lambda \subset {\mathbb Z}^s \setminus ({\cal D} - {\cal D})$ such that $M^{-1} (({\cal D} - {\cal D}) + \Lambda) \cap {\mathbb Z}^s \subset \Lambda$. This set $\Lambda$ can be restricted to be contained in a finite set K depending only on M and ${\cal D}$. We also give a new proof for the fact that $T(M, {\cal D})$ is a lattice tiling if and only if $\cup_{n=1}^\infty ( \sum_{j=0}^{n-1} M^...

[1]  Jeffrey C. Lagarias,et al.  Self-affine tiles in ℝn , 1996 .

[2]  Ding-Xuan Zhou The $p$-norm joint spectral radius for even integers , 1998 .

[3]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[4]  Gilbert Strang,et al.  Eigenvalues of (↓2)H and convergence of the cascade algorithm , 1996, IEEE Trans. Signal Process..

[5]  R. Strichartz Self-similar measures and their Fourier transforms. II , 1993 .

[6]  J. Lagarias,et al.  Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .

[7]  R. Jia Subdivision Schemes in L p Spaces , 1995 .

[8]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[9]  Ding-Xuan Zhou,et al.  Stability of refinable functions, multiresolution analysis, and Haar bases , 1996 .

[10]  W. Lawton Necessary and sufficient conditions for constructing orthonormal wavelet bases , 1991 .

[11]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[12]  A. Paz Definite and quasidefinite sets of stochastic matrices , 1965 .

[13]  Eugene Seneta,et al.  Non‐Negative Matrices , 1975 .

[14]  H. Prautzsch,et al.  Refinement and subdivision for spaces of integer translates of a compactly supported function , 1989 .

[15]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[16]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[17]  Rong-Qing Jia,et al.  Convergence of Subdivision Schemes Associated with Nonnegative Masks , 2000, SIAM J. Matrix Anal. Appl..

[18]  Hendrik W. Lenstra,et al.  Integer programming and cryptography , 1984 .

[19]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[20]  S. L. Lee,et al.  Convergence of multidimensional cascade algorithm , 1998 .

[21]  Gilbert Strang,et al.  Inhomogeneous refinement equations , 1998 .

[22]  Rong-Qing Jia,et al.  Subdivision schemes inLp spaces , 1995, Adv. Comput. Math..