Semiclassical calculations of vibrational energy levels for nonseparable systems using the Birkhoff–Gustavson normal form
暂无分享,去创建一个
[1] H. Goldstein,et al. Classical Mechanics , 1951, Mathematical Gazette.
[2] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[3] R. Marcus,et al. Semiclassical calculation of bound states of a multidimensional system , 1974 .
[4] F. G. Gustavson,et al. Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .
[5] Neil Pomphrey,et al. Numerical identification of regular and irregular spectra , 1974 .
[6] M. Berry,et al. Closed orbits and the regular bound spectrum , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] M. Hénon,et al. The applicability of the third integral of motion: Some numerical experiments , 1964 .
[8] C. Siegel. Über die Existenz einer Normalform analytischerHamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung , 1954 .
[9] Max Born,et al. The Mechanics of the Atom , 1927 .
[10] Joseph B. Keller,et al. Corrected bohr-sommerfeld quantum conditions for nonseparable systems , 1958 .
[11] J. Delos,et al. Semiclassical calculation of energy levels for non-separable systems , 1977 .
[12] Jürgen Moser,et al. The analytic invariants of an area‐preserving mapping near a hyperbolic fixed point , 1956 .
[13] Aurel Wintner,et al. The Analytical Foundations of Celestial Mechanics , 2014 .
[14] N. Balazs,et al. Fundamental Problems in Statistical Mechanics , 1962 .
[15] A. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .
[16] I. Percival,et al. Vibrational quantization of polyatomic molecules , 1976 .
[17] B. C. Garrett,et al. Semiclassical eigenvalues for nonseparable systems: Nonperturbative solution of the Hamilton–Jacobi equation in action‐angle variables , 1976 .