Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites

This article reports about nanocomposites, which refractive index is tuned by adding TiO2 nanoparticles. We compare in situ/ex situ preparation of nanocomposites. Preparation procedure is described, properties of nanocomposites are compared, and especially we examine the applicability of two-photon polymerization (2PP) of synthesized nanocomposites. All prepared samples exhibit suitable optical transparency at specific laser wavelengths. Three-dimensional structures were generated by means of two-photon polymerization effect induced by a femtosecond laser.

[1]  Jia Huang,et al.  Preparation of TiO2 nanoparticles by supercritical carbon dioxide , 2008 .

[2]  T. Hirai,et al.  Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide , 1993 .

[3]  Satoshi Kawata,et al.  Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication , 2004 .

[4]  U. Suter,et al.  High refractive index films of polymer nanocomposites , 1993 .

[5]  D. Gray,et al.  Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication , 2010 .

[6]  R. C. Weast HANDBOOK OF CHEMISTRY AND PHYSICS, 49th ed , 1969 .

[7]  Adrian H. Kitai,et al.  Solid State Luminescence , 1993 .

[8]  Wen-Chang Chen,et al.  High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)−Titania Materials , 2001 .

[9]  E. A. Payzant,et al.  Wet-chemical synthesis of monodispersed barium titanate particles — hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3 , 2000 .

[10]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[11]  Walter Caseri,et al.  Size Variation of PbS Particles in High-Refractive-Index Nanocomposites , 1994 .

[12]  Effect of Stirring and Heating Rate on the Formation of TiO2 Powders Using Supercritical Fluid , 2000 .

[13]  A. Ostendorf,et al.  Laser direct writing of nanocompounds , 2011 .

[14]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[15]  Ya-Lan Wen,et al.  Preparation of TiO 2 nanoparticles by supercritical carbon dioxide , 2008 .

[16]  P. Ormos,et al.  Integrated optical motor. , 2006, Applied optics.

[17]  J A Dobrowolski,et al.  High performance step-down AR coatings for high refractive-index IR materials. , 1982, Applied optics.

[18]  Takahiro Harada,et al.  Mode switching of an optical motor , 2002 .

[19]  T. Ring,et al.  Nucleation and growth of monosized titania powders from alcohol solution , 1986 .

[20]  M. Ueda,et al.  Sulfur-Containing Poly(meth)acrylates with High Refractive Indices and High Abbe’s Numbers , 2008 .

[21]  Andreas Ostendorf,et al.  Laser direct writing of high-refractive-index polymer/TiO2 nanocomposites , 2012, LASE.

[22]  Bai Yang,et al.  The research on syntheses and properties of novel epoxy/polymercaptan curing optical resins with high refractive indices , 2001 .

[23]  Burak Temelkuran,et al.  External Reflection from Omnidirectional Dielectric Mirror Fibers , 2002, Science.

[24]  J. A. Leon,et al.  New UV-Curable High Refractive Index Oligomers , 2008 .

[25]  E. Yablonovitch How to Be Truly Photonic , 2000, Science.

[26]  L. Hornak Polymers for lightwave and integrated optics : technology and applications , 1992 .

[27]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .