A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation

[1]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[2]  R. Dupaix,et al.  Temperature and rate dependent finite strain behavior of poly(ethylene terephthalate) and poly(ethylene terephthalate)-glycol above the glass transition temperature , 2003 .

[3]  L. Anand,et al.  On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing , 2004 .

[4]  S. A. Stern,et al.  Estimation of the free volume in polymers by means of a Monte Carlo technique , 1989 .

[5]  Mary C. Boyce,et al.  Direct Comparison of the Gent and the Arruda-Boyce Constitutive Models of Rubber Elasticity , 1996 .

[6]  Lallit Anand,et al.  On modeling the micro-indentation response of an amorphous polymer , 2006 .

[7]  S. Ahzi,et al.  A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures , 2005 .

[8]  J. Lambros,et al.  Role of plasticity in heat generation during high rate deformation and fracture of polycarbonate , 2002 .

[9]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[10]  Mary C. Boyce,et al.  Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .

[11]  C. Truesdell,et al.  The Nonlinear Field Theories in Mechanics , 1968 .

[12]  J. Bauwens,et al.  The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests , 1972 .

[13]  S. Basu,et al.  Analysis of temperature effects near mode I cracks in glassy polymers , 2005 .

[14]  J. Bauwens,et al.  Tensile yield‐stress behavior of glassy polymers , 1969 .

[15]  É. Hermida,et al.  Phenomenological description of strain rate and temperature-dependent yield stress of PMMA , 1995 .

[16]  Said Ahzi,et al.  Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress , 2006 .

[17]  Gary S. Grest,et al.  Liquid-glass transition, a free-volume approach , 1979 .

[18]  M. Boyce,et al.  Temperature Rise in Polymeric Materials During High Rate Deformation , 2008 .

[19]  Mary C. Boyce,et al.  Evolution of plastic anisotropy in amorphous polymers during finite straining , 1993 .

[20]  W. Swift,et al.  Length Changes in Metals Under Torsional Overstrain , 1947 .

[21]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[22]  R. E. Robertson,et al.  Theory for the Plasticity of Glassy Polymers , 1966 .

[23]  M. Boyce,et al.  A constitutive model for the nonlinear viscoelastic viscoplastic behavior of glassy polymers , 1995 .

[24]  É. Hermida,et al.  Temperature and strain rate dependence of the tensile yield stress of PVC , 1996 .

[25]  Lallit Anand,et al.  Granular materials: constitutive equations and strain localization , 2000 .

[26]  V. Giessen,et al.  ON LARGE-STRAIN INELASTIC TORSION OF GLASSY POLYMERS , 1993 .

[27]  L. Anand,et al.  Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[28]  Lallit Anand,et al.  A theory of amorphous solids undergoing large deformations, with application to polymeric glasses , 2003 .

[29]  J. Bauwens Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the β transition range , 1972 .

[30]  P. Haupt,et al.  Viscoplasticity of elastomeric materials: experimental facts and constitutive modelling , 2001 .

[31]  Lallit Anand,et al.  On H. Hencky’s Approximate Strain-Energy Function for Moderate Deformations , 1979 .

[32]  Lallit Anand,et al.  The decomposition F = FeFp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous , 2005 .

[33]  L. Anand,et al.  A large deformation theory for rate-dependent elastic–plastic materials with combined isotropic and kinematic hardening , 2009 .

[34]  E. Giessen,et al.  On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers , 1993 .

[35]  C. P. Buckley,et al.  Glass-rubber constitutive model for amorphous polymers near the glass transition , 1995 .

[36]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[37]  Lallit Anand,et al.  Moderate deformations in extension-torsion of incompressible isotropic elastic materials , 1986 .

[38]  S. Basu,et al.  A thermo-mechanical study of mode I, small-scale yielding crack-tip fields in glassy polymers , 2002 .

[39]  Alexander Lion,et al.  Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models , 2000 .

[40]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[41]  Wu Gui-long,et al.  Prediction of Polymer Properties , 2003 .

[42]  S. Basu,et al.  On the importance of thermo-elastic cooling in the fracture of glassy polymers at high rates , 2008 .

[43]  Lallit Anand,et al.  A constitutive theory for the mechanical response of amorphous metals at high temperatures spanning the glass transition temperature: Application to microscale thermoplastic forming , 2008 .

[44]  Wam Marcel Brekelmans,et al.  The Influence of Intrinsic Strain Softening on Strain Localization in Polycarbonate: Modeling and Experimental Validation , 2000 .

[45]  G. Thackray,et al.  The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[46]  Mary C. Boyce,et al.  Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition , 2007 .

[47]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[48]  M. Boyce,et al.  Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model , 1988 .

[49]  J. Bauwens,et al.  Tensile yield‐stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region , 1969 .

[50]  A. Argon A theory for the low-temperature plastic deformation of glassy polymers , 1973 .

[51]  M. Demkowicz,et al.  What Can Plasticity of Amorphous Silicon Tell Us about Plasticity of Metallic Glasses? , 2008 .

[52]  M. Boyce,et al.  Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues , 2001 .

[53]  B. Cherry,et al.  Comment on “the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates” , 1976 .

[54]  Mary C. Boyce,et al.  Mechanics of the rate-dependent elastic¿plastic deformation of glassy polymers from low to high strain rates , 2006 .

[55]  Jean-Louis Chaboche,et al.  A review of some plasticity and viscoplasticity constitutive theories , 2008 .

[56]  Morton E. Gurtin,et al.  On the plasticity of single crystals: free energy, microforces, plastic-strain gradients , 2000 .

[57]  Alexander Lion,et al.  On the large deformation behaviour of reinforced rubber at different temperatures , 1997 .

[58]  L. Anand,et al.  Notch-sensitive fracture of polycarbonate , 2004 .

[59]  Mary C. Boyce,et al.  Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers , 1995 .

[60]  B. Crist Yield processes in glassy polymers , 1997 .

[61]  Shawn A. Chester,et al.  A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications , 2009 .

[62]  C. Bauwens-Crowet,et al.  The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates , 1973 .