Matrix LSQR algorithm for structured solutions to quaternionic least squares problem

Abstract In this paper, we employ matrix LSQR algorithm to deal with quaternionic least squares problem in order to find the minimum norm solutions with kinds of special structures, and propose a strategy to accelerate convergence rate of the algorithm via right–left preconditioning of the coefficient matrices. We mainly focus on analyzing the minimum norm η -Hermitian solution and the minimum norm η -biHermitian solution to the quaternionic least squares problem, η ∈ { i , j , k } . Other structured solutions also can be obtained using the proposed technique. A number of numerical experiments are performed to show the efficiency of the preconditioned matrix LSQR algorithm.

[1]  Abdur Rehman,et al.  Solution to a system of real quaternion matrix equations encompassing η-Hermicity , 2015, Appl. Math. Comput..

[2]  Shifang Yuan,et al.  Two special kinds of least squares solutions for the quaternion matrix equation AXB+CXD=E , 2012 .

[3]  Yong Chen,et al.  A new real structure-preserving quaternion QR algorithm , 2017, J. Comput. Appl. Math..

[4]  Yabo Chen,et al.  LSQR iterative common symmetric solutions to matrix equations AXB = E and CXD = F , 2010, Appl. Math. Comput..

[5]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[6]  Faezeh Toutounian,et al.  Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides , 2006, Appl. Math. Comput..

[7]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[8]  Yan Feng,et al.  An iterative algorithm for least squares problem in quaternionic quantum theory , 2008, Comput. Phys. Commun..

[9]  Xin Liu The η-anti-Hermitian solution to some classic matrix equations , 2018, Appl. Math. Comput..

[10]  P. Hansen,et al.  Subspace Preconditioned LSQR for Discrete Ill-Posed Problems , 2003 .

[11]  Davies,et al.  Observability of quaternionic quantum mechanics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  John Vince,et al.  Quaternions for Computer Graphics , 2011 .

[13]  Zhigang Jia,et al.  Matrix iterative algorithms for least-squares problem in quaternionic quantum theory , 2013, Int. J. Comput. Math..

[14]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[15]  Qingwen Wang,et al.  A real quaternion matrix equation with applications , 2013 .

[16]  Minghui Wang,et al.  Hermitian tridiagonal solution with the least norm to quaternionic least squares problem , 2010, Comput. Phys. Commun..

[17]  S. Adler,et al.  Quaternionic quantum mechanics and quantum fields , 1995 .

[18]  Xie,et al.  THE SOLVABILITY CONDITIONS FOR INVERSE EIGENVALUE PROBLEM OF ANTI-BISYMMETRIC MATRICES , 2002 .

[19]  Lei Zhang,et al.  The inverse problem of bisymmetric matrices with a submatrix constraint , 2004, Numer. Linear Algebra Appl..

[20]  Musheng Wei,et al.  A new structure-preserving method for quaternion Hermitian eigenvalue problems , 2013, J. Comput. Appl. Math..

[21]  Maryam Dehghan,et al.  A general iterative approach for solving the general constrained linear matrix equations system , 2016 .

[22]  Zhigang Jia,et al.  LSQR algorithm with structured preconditioner for the least squares problem in quaternionic quantum theory , 2017, Comput. Math. Appl..

[23]  Saeed Karimi The right–left preconditioning technique for the solution of the large matrix equation AXB = C , 2016, Int. J. Comput. Math..

[24]  Fengxia Zhang,et al.  A fast structure-preserving method for computing the singular value decomposition of quaternion matrices , 2014, Appl. Math. Comput..

[25]  Peng Wang,et al.  Least squares η-bi-Hermitian problems of the quaternion matrix equation (AXB,CXD) = (E,F) , 2015 .

[26]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[27]  Stephen J. Sangwine,et al.  Quaternion involutions and anti-involutions , 2005, Comput. Math. Appl..

[28]  Xiang Zhang,et al.  Least-squares problem for the quaternion matrix equation AXB+CYD=E over different constrained matrices , 2013, Int. J. Comput. Math..

[29]  Fengxia Zhang,et al.  Real structure-preserving algorithms of Householder based transformations for quaternion matrices , 2016, J. Comput. Appl. Math..

[30]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[31]  Danilo P. Mandic,et al.  Augmented second-order statistics of quaternion random signals , 2011, Signal Process..

[32]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[33]  Roger A. Horn,et al.  A generalization of the complex Autonne–Takagi factorization to quaternion matrices , 2012 .

[34]  Soo-Chang Pei,et al.  Color image processing by using binary quaternion-moment-preserving thresholding technique , 1999, IEEE Trans. Image Process..

[35]  Danilo P. Mandic,et al.  On the unitary diagonalisation of a special class of quaternion matrices , 2011, Appl. Math. Lett..

[36]  Angelika Bunse-Gerstner,et al.  An improved preconditioned LSQR for discrete ill-posed problems , 2006, Math. Comput. Simul..

[37]  Xiang Zhang A system of generalized Sylvester quaternion matrix equations and its applications , 2016, Appl. Math. Comput..

[38]  Shi-Fang Yuan,et al.  The least squares η-Hermitian problems of quaternion matrix equation AHXA + BHYB=C , 2014 .

[39]  Zhen-Yun Peng A matrix LSQR iterative method to solve matrix equation AXB=C , 2010, Int. J. Comput. Math..

[40]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[41]  Zhuo-Heng He,et al.  The η-bihermitian solution to a system of real quaternion matrix equations , 2014 .

[42]  Yuan Lei,et al.  Least‐squares solutions of matrix inverse problem for bi‐symmetric matrices with a submatrix constraint , 2007, Numer. Linear Algebra Appl..

[43]  Davod Khojasteh Salkuyeh,et al.  A PRECONDITIONER FOR THE LSQR ALGORITHM , 2008 .

[44]  Danilo P. Mandic,et al.  A class of quaternion valued affine projection algorithms , 2013, Signal Process..