An exact penalty function for semi-infinite programming

This paper introduces a global approach to the semi-infinite programming problem that is based upon a generalisation of the ℓ1 exact penalty function. The advantages are that the ensuing penalty function is exact and the penalties include all violations. The merit function requires integrals for the penalties, which provides a consistent model for the algorithm. The discretization is a result of the approximate quadrature rather than an a priori aspect of the model.

[1]  T. Apostol Mathematical Analysis , 1957 .

[2]  Vl. D. Mazurov,et al.  Iteration Method for Solving Problems of Convex Programming , 1967 .

[3]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[4]  Yu.B. Germeyer Approximate reduction of the problem of determining a maximin to the problem of determining a maximum by means of penalty functions , 1969 .

[5]  T. Pietrzykowski The potential method for conditional maxima in the locally compact metric spaces , 1970 .

[6]  T. Pietrzykowski,et al.  A Penalty Function Method Converging Directly to a Constrained Optimum , 1977 .

[7]  R. Hettich,et al.  On quadratically convergent methods for semi-infinite programming , 1979 .

[8]  HettichR.,et al.  Semi-infinite programming , 1979 .

[9]  G. Watson Globally convergent methods for semi-infinite programming , 1981 .

[10]  Philip E. Gill,et al.  Practical optimization , 1981 .

[11]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming and Applications , 1983, ISMP.

[12]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[13]  H. Wacker,et al.  Globalization of Locally Convergent Algorithms for Nonlinear Optimization Problems with Constraints , 1983 .

[14]  J. Borwein SEMI-INFINITE PROGRAMMING DUALITY: HOW SPECIAL IS IT? , 1983 .

[15]  G. A. Watson,et al.  Numerical Experiments with Globally Convergent Methods for Semi-Infinite Programming Problems , 1983 .

[16]  S. Gustafson A Three-Phase Algorithm for Semi-Infinite Programs , 1983 .

[17]  Danny C. Sorensen,et al.  A note on the computation of an orthonormal basis for the null space of a matrix , 1982, Math. Program..

[18]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[19]  G. Alistair Watson,et al.  A projected lagrangian algorithm for semi-infinite programming , 1985, Math. Program..

[20]  J. Edwards A treatise on the integral calculus : with applications, examples and problems. , 2015 .