Low rank approximation and regression in input sparsity time
暂无分享,去创建一个
[1] F. T. Wright,et al. A Bound on Tail Probabilities for Quadratic Forms in Independent Random Variables , 1971 .
[2] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[3] L. Trefethen,et al. Numerical linear algebra , 1997 .
[4] Jon Kleinberg,et al. Authoritative sources in a hyperlinked environment , 1999, SODA '98.
[5] Santosh S. Vempala,et al. Latent Semantic Indexing , 2000, PODS 2000.
[6] Frank McSherry,et al. Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[7] Anna R. Karlin,et al. Spectral analysis of data , 2001, STOC '01.
[8] Amos Fiat,et al. Web search via hub synthesis , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[9] Prabhakar Raghavan,et al. Competitive recommendation systems , 2002, STOC '02.
[10] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[11] Alan M. Frieze,et al. Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.
[12] Moses Charikar,et al. Finding frequent items in data streams , 2004, Theor. Comput. Sci..
[13] Mikkel Thorup,et al. Tabulation based 4-universal hashing with applications to second moment estimation , 2004, SODA '04.
[14] Dimitris Achlioptas,et al. On Spectral Learning of Mixtures of Distributions , 2005, COLT.
[15] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[16] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[17] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[18] S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, ACM-SIAM Symposium on Discrete Algorithms.
[19] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[20] S. Muthukrishnan,et al. Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods , 2006, APPROX-RANDOM.
[21] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[22] S. Muthukrishnan,et al. Sampling algorithms for l2 regression and applications , 2006, SODA '06.
[23] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..
[24] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[25] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[26] Dimitris Achlioptas,et al. Fast computation of low-rank matrix approximations , 2007, JACM.
[27] Santosh S. Vempala,et al. The Spectral Method for General Mixture Models , 2008, SIAM J. Comput..
[28] Anirban Dasgupta,et al. Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.
[29] Trac D. Tran,et al. A fast and efficient algorithm for low-rank approximation of a matrix , 2009, STOC '09.
[30] David P. Woodruff,et al. Numerical linear algebra in the streaming model , 2009, STOC '09.
[31] Anirban Dasgupta,et al. A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.
[32] David P. Woodruff,et al. Fast Manhattan sketches in data streams , 2010, PODS '10.
[33] Avner Magen,et al. Low rank matrix-valued chernoff bounds and approximate matrix multiplication , 2010, SODA '11.
[34] S. Muthukrishnan,et al. Faster least squares approximation , 2007, Numerische Mathematik.
[35] David P. Woodruff,et al. Fast moment estimation in data streams in optimal space , 2010, STOC '11.
[36] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[37] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[38] Fast matrix rank algorithms and applications , 2012, STOC '12.
[39] Gary L. Miller,et al. Iterative Approaches to Row Sampling , 2012, ArXiv.
[40] David P. Woodruff,et al. Fast approximation of matrix coherence and statistical leverage , 2011, ICML.
[41] Anastasios Zouzias,et al. A Matrix Hyperbolic Cosine Algorithm and Applications , 2011, ICALP.
[42] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[43] Nikolaos M. Freris,et al. Randomized Extended Kaczmarz for Solving Least Squares , 2012, SIAM J. Matrix Anal. Appl..
[44] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[45] Christos Boutsidis,et al. Random Projections for Linear Support Vector Machines , 2012, TKDD.
[46] Daniel M. Kane,et al. Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.