Progress and challenges in advanced ground-based gravitational-wave detectors

F. S. Bortoli | A. Wade | G. Prodi | P. Wessels | A. Khalaidovski | M. Landry | S. Leavey | M. Leonardi | M. Lorenzini | G. Losurdo | E. Majorana | V. Malvezzi | G. Mansell | D. Martynov | N. Mavalvala | D. McClelland | G. Meadors | C. Michel | Y. Minenkov | C. Mow-Lowry | C. Mueller | G. Mueller | I. Nardecchia | L. Naticchioni | M. Neri | P. Oppermann | L. Pinard | P. Puppo | D. Reitze | A. Rocchi | B. Sassolas | R. Schnabel | R. Schofield | E. Schreiber | V. Sequino | D. Shaddock | D. Shoemaker | D. Sigg | B. Sorazu | N. Straniero | D. Tanner | T. Theeg | H. Vahlbruch | G. Vajente | L. Barsotti | A. Bell | A. Bertolini | C. Blair | H. Bulten | G. Cagnoli | E. Cesarini | A. Chincarini | S. Chua | G. Ciani | E. Coccia | J. Degallaix | K. Dooley | S. Dwyer | V. Fafone | S. Farinon | R. Flaminio | A. Freise | P. Fritschel | V. Frolov | P. Fulda | G. Gemme | M. Granata | S. Gras | H. Grote | R. Gustafson | M. Hanke | M. Heintze | S. Hild | K. Izumi | M. Kasprzack | K. Kawabe | D. Lumaca | O. Puncken | K. Strain | C. Vorvick | R. Ward | B. Willke | J. Zendri | M. Canepa | C. Bogan | C. Bond | D. Brown | A. Conte | V. Dolique | M. Factourovich | N. Gordon | F. Kawazoe | E. Hennes | P. Lam | T. Akutsu | M. Ando | Y. Aso | S. Kawamura | N. Kimura | K. Kuroda | M. Ohashi | Y. Saito | A. Shoda | K. Somiya | T. Suzuki | K. Tsubono | T. Uchiyama | K. Yamamoto | D. Feldbaum | J. Gleason | S. Gossler | C. Gräf | J. Macarthur | M. Blom | M. Doets | V. Mangano | J. Marque | F. Mul | R. Takahashi | L. Carbone | K. Shibata | T. Kume | E. Serra | B. Buchler | K. Ishidoshiro | B. Champagnon | M. Prato | P. Kwee | M. Frede | L. Winkelmann | B. Barr | M. Damjanic | D. Friedrich | Z. Liu | T. Meier | N. Smith-Lefebvre | M. Stefszky | L. Williams | M. Adier | C. Tokoku | M. Evans | L. Bellon | Y. Niwa | S. Koike | D. Chen | L. Anghinolfi | T. Fricke | M. Arain | S. Huttner | T. Li | A. Mermet | A. Chtanov | J. Poeld | G. Tellez | N. Magalhães | V. Quetschke | B. Lagrange | C. Frajuca | R. A. Day | Y. Sakakibara | M. Beker | D. Forest | T. Li | F. Aguilar | P. Antonini | M. Cortese | M. Daloisio | D. Ligny | M. Geitner | M. Gross | A. Kumeta | R. Martin | L. Mudadu | D. N. Nanda Kumar | K. Okada | P. Risson | N. Saito | A. Schimmel | S. Ueda | J. Brand | N. Magalhaes | D. Nanda Kumar | D. Brown | F. Bortoli | A. Bell

[1]  J. R. Leong,et al.  A fixed false alarm probability figure of merit for gravitational wave detectors , 2014 .

[2]  Benno Willke,et al.  Thermal correction of astigmatism in the gravitational wave observatory GEO 600 , 2013, 1311.5367.

[3]  M. Neri,et al.  Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects , 2013 .

[4]  P K Lam,et al.  Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light. , 2013, Optics express.

[5]  Seismic attenuation system for the external injection bench of the Advanced Virgo gravitational wave detector , 2013 .

[6]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[7]  G. Vajente,et al.  Adaptive optics sensing and control technique to optimize the resonance of the Laguerre-Gauss 33 mode in Fabry-Perot cavities , 2013 .

[8]  G. Mueller,et al.  Feedback control of optical beam spatial profiles using thermal lensing. , 2013, Applied optics.

[9]  L. Barsotti,et al.  Realistic filter cavities for advanced gravitational wave detectors , 2013, 1305.1599.

[10]  J. Marque,et al.  Reduction of higher order mode generation in large scale gravitational wave interferometers by central heating residual aberration correction , 2013 .

[11]  David Blair,et al.  Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry-Perot cavity , 2013 .

[12]  C Bogan,et al.  Generation of high-purity higher-order Laguerre-Gauss beams at high laser power. , 2013, Physical review letters.

[13]  R. Schnabel,et al.  First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.

[14]  Charlotte Bond,et al.  Experimental test of higher-order Laguerre–Gauss modes in the 10 m Glasgow prototype interferometer , 2013 .

[15]  H. Lück,et al.  Seismic attenuation system for the AEI 10 meter Prototype , 2012 .

[16]  D. Kracht,et al.  All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power , 2012, IEEE Photonics Technology Letters.

[17]  Eugenio Coccia,et al.  Thermal effects and their compensation in Advanced Virgo , 2012 .

[18]  C Bogan,et al.  Stabilized high-power laser system for the gravitational wave detector advanced LIGO. , 2012, Optics express.

[19]  M. Loupias,et al.  Virgo: a laser interferometer to detect gravitational waves , 2012 .

[20]  Benno Willke,et al.  Suspension platform interferometer for the AEI 10 m prototype: concept, design and optical layout , 2012 .

[21]  H. Lück,et al.  Optical layout for a 10 m Fabry–Perot Michelson interferometer with tunable stability , 2011, 1112.1804.

[22]  D. McClelland,et al.  Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. , 2011, Optics letters.

[23]  S. Koehlenbeck,et al.  The 10m AEI prototype facility A brief overview , 2011, 1111.7252.

[24]  K. Danzmann,et al.  Laser power noise detection at the quantum-noise limit of 32 A photocurrent. , 2011, Optics letters.

[25]  J. Miller,et al.  Effects of mirror aberrations on Laguerre-Gaussian beams in interferometric gravitational-wave detectors , 2011, 1108.3114.

[26]  Charlotte Bond,et al.  Higher order Laguerre-Gauss mode degeneracy in realistic, high finesse cavities , 2011, 1107.3812.

[27]  D. Kracht,et al.  Injection-locked single-frequency laser with an output power of 220 W , 2011 .

[28]  Benno Willke,et al.  Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode. , 2010, Optics letters.

[29]  H. Lück,et al.  Eigenmode changes in a misaligned triangular optical cavity , 2010, 1010.5677.

[30]  M. Ando,et al.  Torsion-bar antenna for low-frequency gravitational-wave observations. , 2010, Physical review letters.

[31]  Benno Willke,et al.  The upgrade of GEO 600 , 2010, 1004.0339.

[32]  W. Korth,et al.  Adaptive control of modal properties of optical beams using photothermal effects. , 2010, Optics express.

[33]  L. Barsotti,et al.  A general approach to optomechanical parametric instabilities , 2009, 0910.2716.

[34]  Benno Willke,et al.  Laser beam quality and pointing measurement with an optical resonator. , 2007, The Review of scientific instruments.

[35]  R. Schilling,et al.  Frequency domain interferometer simulation with higher-order spatial modes , 2003, gr-qc/0309012.

[36]  Ryan Christopher Lawrence,et al.  Active Wavefront Correction in Laser Interferometric Gravitational Wave Detectors , 2003 .

[37]  S. Ciliberto,et al.  Differential interferometry with a complex contrast , 2002 .

[38]  W. F. Velloso,et al.  Transducers for the Brazilian gravitational wave detector 'Mario Schenberg' , 2002 .