Iteratively-Refined Interactive 3D Medical Image Segmentation With Multi-Agent Reinforcement Learning

Existing automatic 3D image segmentation methods usually fail to meet the clinic use. Many studies have explored an interactive strategy to improve the image segmentation performance by iteratively incorporating user hints. However, the dynamic process for successive interactions is largely ignored. We here propose to model the dynamic process of iterative interactive image segmentation as a Markov decision process (MDP) and solve it with reinforcement learning (RL). Unfortunately, it is intractable to use single-agent RL for voxel-wise prediction due to the large exploration space. To reduce the exploration space to a tractable size, we treat each voxel as an agent with a shared voxel-level behavior strategy so that it can be solved with multi-agent reinforcement learning. An additional advantage of this multi-agent model is to capture the dependency among voxels for segmentation task. Meanwhile, to enrich the information of previous segmentations, we reserve the prediction uncertainty in the state space of MDP and derive an adjustment action space leading to a more precise and finer segmentation. In addition, to improve the efficiency of exploration, we design a relative cross-entropy gain-based reward to update the policy in a constrained direction. Experimental results on various medical datasets have shown that our method significantly outperforms existing state-of-the-art methods, with the advantage of less interactions and a faster convergence.

[1]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[3]  Heesoo Myeong,et al.  SeedNet: Automatic Seed Generation with Deep Reinforcement Learning for Robust Interactive Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[4]  Ender Konukoglu,et al.  Iterative Interaction Training for Segmentation Editing Networks , 2018, MLMI@MICCAI.

[5]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[6]  Konstantinos Kamnitsas,et al.  DeepCut: Object Segmentation From Bounding Box Annotations Using Convolutional Neural Networks , 2016, IEEE Transactions on Medical Imaging.

[7]  Sanja Fidler,et al.  Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN++ , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Sanja Fidler,et al.  Annotating Object Instances with a Polygon-RNN , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Toshihiko Yamasaki,et al.  Fully Convolutional Network with Multi-Step Reinforcement Learning for Image Processing , 2018, AAAI.

[10]  Xiahai Zhuang,et al.  Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI , 2016, Medical Image Anal..

[11]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[12]  Sébastien Ourselin,et al.  DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ning Xu,et al.  Deep Interactive Object Selection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Andrew Blake,et al.  GeoS: Geodesic Image Segmentation , 2008, ECCV.

[15]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Sébastien Ourselin,et al.  Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views , 2016, Medical Image Anal..

[17]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[18]  Sébastien Ourselin,et al.  Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning , 2017, IEEE Transactions on Medical Imaging.

[19]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[20]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[21]  Sébastien Ourselin,et al.  On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task , 2017, IPMI.

[22]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[23]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).