Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis

Consistent estimators of the rank-deficient fundamental matrix yielding information on the relative orientation of two images in two-view motion analysis are derived. The estimators are derived by minimizing a corrected contrast function in a quadratic measurement error model. In addition, a consistent estimator for the measurement error variance is obtained. Simulation results show the improved accuracy of the newly proposed estimator compared to the ordinary total least-squares estimator.

[1]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[2]  Rudolf Mester,et al.  The Role of Total Least Squares in Motion Analysis , 1998, ECCV.

[3]  Richard I. Hartley,et al.  In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  MeerPeter,et al.  Heteroscedastic Regression in Computer Vision , 2000 .

[5]  Subhasis Chaudhuri,et al.  Recursive Estimation of Motion Parameters , 1996, Comput. Vis. Image Underst..

[6]  ScienceDirect Computational statistics & data analysis , 1983 .

[7]  Peter Meer,et al.  Heteroscedastic Regression in Computer Vision: Problems with Bilinear Constraint , 2000, International Journal of Computer Vision.

[8]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[9]  Giansalvo Cirrincione,et al.  Robust Neural Approach for the Estimation of the Essential Parameters in Computer Vision , 1999, Int. J. Artif. Intell. Tools.

[10]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[11]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[12]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[13]  J. Vandewalle,et al.  Analysis and properties of the generalized total least squares problem AX≈B when some or all columns in A are subject to error , 1989 .

[14]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[15]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[16]  I HartleyRichard In Defense of the Eight-Point Algorithm , 1997 .

[17]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[18]  Gang Xu,et al.  Epipolar Geometry in Stereo, Motion and Object Recognition , 1996, Computational Imaging and Vision.