Homogenization‐based topology optimization for high‐resolution manufacturable microstructures

Summary This paper presents a projection method to obtain high-resolution, manufacturable structures from efficient and coarse-scale homogenization-based topology optimization results. The presented approach bridges coarse and fine scale, such that the complex periodic microstructures can be represented by a smooth and continuous lattice on the fine mesh. A heuristic methodology allows control of the projected topology, such that a minimum length scale on both solid and void features is ensured in the final result. Numerical examples show excellent behavior of the method, where performances of the projected designs are almost equal to the homogenization-based solutions. A significant reduction in computational cost is observed compared to conventional topology optimization approaches.

[1]  Michael Stingl,et al.  Efficient Two-Scale Optimization of Manufacturable Graded Structures , 2012, SIAM J. Sci. Comput..

[2]  Marco Avellaneda,et al.  Optimal bounds and microgeometries for elastic two-phase composites , 1987 .

[3]  N. Olhoff,et al.  An investigation concerning optimal design of solid elastic plates , 1981 .

[4]  Piotr Breitkopf,et al.  Recent Advances on Topology Optimization of Multiscale Nonlinear Structures , 2017 .

[5]  Olivier Pantz,et al.  Construction of minimization sequences for shape optimization , 2010, 2010 15th International Conference on Methods and Models in Automation and Robotics.

[6]  Joe Alexandersen,et al.  Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner - DTU Orbit (09/10/2017) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis precondi , 2015 .

[7]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[8]  O. Pantz,et al.  A Post-Treatment of the Homogenization Method for Shape Optimization , 2008, SIAM J. Control. Optim..

[9]  Gilles A. Francfort,et al.  Homogenization and optimal bounds in linear elasticity , 1986 .

[10]  Ole Sigmund,et al.  Interactive topology optimization on hand-held devices , 2012, Structural and Multidisciplinary Optimization.

[11]  H. Rodrigues,et al.  Hierarchical optimization of material and structure , 2002 .

[12]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[13]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[14]  E. Hinton,et al.  A review of homogenization and topology optimization III—topology optimization using optimality criteria , 1998 .

[15]  Ole Sigmund,et al.  On the (non-)optimality of Michell structures , 2016, Structural and Multidisciplinary Optimization.

[16]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[17]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[18]  E. Hinton,et al.  A review of homogenization and topology optimization I- homogenization theory for media with periodic structure , 1998 .

[19]  O. Sigmund,et al.  Topology optimization of coated structures and material interface problems , 2015 .

[20]  Pedro G. Coelho,et al.  Parallel computing techniques applied to the simultaneous design of structure and material , 2011, Adv. Eng. Softw..

[21]  E. Hinton,et al.  A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations , 1998 .

[22]  Ole Sigmund,et al.  Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load , 2016 .

[23]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[24]  Raymond C. Rumpf,et al.  Synthesis of spatially variant lattices. , 2012, Optics express.

[25]  Casper Schousboe Andreasen,et al.  How to determine composite material properties using numerical homogenization , 2014 .

[26]  Peter D. Dunning,et al.  Simultaneous material and structural optimization by multiscale topology optimization , 2016 .

[27]  O. Sigmund,et al.  Checkerboard patterns in layout optimization , 1995 .

[28]  Boyan S. Lazarov Topology Optimization Using Multiscale Finite Element Method for High-Contrast Media , 2013, LSSC.

[29]  B. Bourdin Filters in topology optimization , 2001 .

[30]  P. Pedersen On optimal orientation of orthotropic materials , 1989 .

[31]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[32]  P. Pedersen Bounds on elastic energy in solids of orthotropic materials , 1990 .

[33]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[34]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[35]  Jennefir L. Digaum,et al.  Spatially variant periodic structures in electromagnetics , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Boyan Stefanov Lazarov,et al.  Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework , 2015 .

[37]  G. W. Reddien,et al.  Projection Methods , 2021, Introduction to the Numerical Solution of Markov Chains.

[38]  M. Stingl,et al.  Simultaneous parametric material and topology optimization with constrained material grading , 2016 .

[39]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .