Optimization techniques for speech emotion recognition

Hay tres aspectos innovadores. Primero, un algoritmo novedoso para calcular el contenido emocional de un enunciado, con un diseno mixto que emplea aprendizaje estadistico e informacion sintactica. Segundo, una extension para seleccion de rasgos que permite adaptar los pesos y asi aumentar la flexibilidad del sistema. Tercero, una propuesta para incorporar rasgos de alto nivel al sistema. Dichos rasgos, combinados con los rasgos de bajo nivel, permiten mejorar el rendimiento del sistema.

[1]  Kornel Laskowski,et al.  Emotion recognition in spontaneous speech using GMMs , 2006, INTERSPEECH.

[2]  Zdravko Kacic,et al.  Context-Independent Multilingual Emotion Recognition from Speech Signals , 2003, Int. J. Speech Technol..

[3]  Yang Li,et al.  Recognizing emotions in speech using short-term and long-term features , 1998, ICSLP.

[4]  B. John Oommen,et al.  On the Pattern Recognition of Noisy Subsequence Trees , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dilek Z. Hakkani-Tür,et al.  Using context to improve emotion detection in spoken dialog systems , 2005, INTERSPEECH.

[6]  Bipin C. Desai,et al.  Similarity Searching in Image Retrieval with Statistical Distance Measures and Supervised Learning , 2005, ICAPR.

[7]  Björn W. Schuller,et al.  Hidden Markov model-based speech emotion recognition , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[8]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Astrid Paeschke,et al.  A database of German emotional speech , 2005, INTERSPEECH.

[11]  Yasubumi Sakakibara,et al.  Recent Advances of Grammatical Inference , 1997, Theor. Comput. Sci..

[12]  Kaizhong Zhang,et al.  Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems , 1989, SIAM J. Comput..

[13]  Say Wei Foo,et al.  Speech emotion recognition using hidden Markov models , 2003, Speech Commun..

[14]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[15]  Tian Lan,et al.  Separability and recognition of emotion states in multilingual speech , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[16]  Paul Boersma,et al.  Praat, a system for doing phonetics by computer , 2002 .

[17]  Valery A. Petrushin,et al.  Emotion recognition in speech signal: experimental study, development, and application , 2000, INTERSPEECH.

[18]  Kaizhong Zhang,et al.  On the Editing Distance Between Unordered Labeled Trees , 1992, Inf. Process. Lett..

[19]  Damián López,et al.  Error-correcting tree language inference , 2002, Pattern Recognit. Lett..

[20]  Winslow Burleson,et al.  Detecting anger in automated voice portal dialogs , 2006, INTERSPEECH.

[21]  Takayuki Kanda,et al.  A tension-moderating mechanism for promoting speech-based human-robot interaction , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Asad Mohsin,et al.  Hamilton, New Zealand , 2008 .

[23]  Kenneth Steiglitz,et al.  Operations on Images Using Quad Trees , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Toni Badia,et al.  ESEDA: A Tool for Enhanced Speech Emotion Detection and Analysis , 2008, 2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution.

[25]  Albino Nogueiras,et al.  Interface Databases: Design and Collection of a Multilingual Emotional Speech Database , 2002, LREC.

[26]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[27]  Florian Schiel,et al.  The SmartKom Multimodal Corpus at BAS , 2002, LREC.

[28]  Björn W. Schuller,et al.  Evolutionary Feature Generation in Speech Emotion Recognition , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[29]  Damián López,et al.  Learning Decision Trees and Tree Automata for a Syntactic Pattern Recognition Task , 2003, IbPRIA.

[30]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[31]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[32]  Emiel Krahmer,et al.  Real vs. acted emotional speech , 2006, INTERSPEECH.

[33]  Joel R. Tetreault,et al.  Using system and user performance features to improve emotion detection in spoken tutoring dialogs , 2006, INTERSPEECH.

[34]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[35]  Elisabeth André,et al.  Comparing Feature Sets for Acted and Spontaneous Speech in View of Automatic Emotion Recognition , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[36]  Edward E. Smith,et al.  Cognitive Psychology: Mind and Brain , 2006 .

[37]  Klaus R. Scherer,et al.  A cross-cultural investigation of emotion inferences from voice and speech: implications for speech technology , 2000, INTERSPEECH.

[38]  Horst Bunke,et al.  Syntactic and structural pattern recognition : theory and applications , 1990 .

[39]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Hiroshi Motoda,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998, The Springer International Series in Engineering and Computer Science.