Neoproterozoic marine carbonates and their paleoceanographic significance

[1]  Han-Qi Zhang,et al.  Study on characteristics and genesis of botryoidal dolostone of the Upper Sinian Dengying Formation: a case study from Hanyuan region, Sichuan, China , 2018, Carbonates and Evaporites.

[2]  M. Hambrey,et al.  Tonian-Cryogenian boundary sections of Argyll, Scotland , 2017, Precambrian Research.

[3]  Christopher P. Reed,et al.  Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants , 2017 .

[4]  A. Fallick,et al.  Duration and nature of the end-Cryogenian (Marinoan) glaciation , 2016 .

[5]  J. Grotzinger,et al.  Cap carbonate platform facies model, Noonday Formation, SE California , 2016 .

[6]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[7]  R. Pancost,et al.  Carbonate rocks and related facies with vestiges of biomarkers: Clues to redox conditions in the Mesoproterozoic ocean , 2016 .

[8]  A. Turchyn,et al.  Diffusive cation fluxes in deep-sea sediments and insight into the global geochemical cycles of calcium, magnesium, sodium and potassium , 2016 .

[9]  D. Schrag,et al.  Neoproterozoic stratigraphy of the Zavkhan terrane of Mongolia: The backbone for Cryogenian and early Ediacaran chemostratigraphic records , 2016, American Journal of Science.

[10]  A. Bekker,et al.  Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada) , 2015 .

[11]  L. Benning,et al.  A route for the direct crystallization of dolomite , 2015 .

[12]  F. Macdonald,et al.  A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations , 2015 .

[13]  D. Schrag,et al.  The Mg isotopic composition of Cenozoic seawater - evidence for a link between Mg-clays, seawater Mg/Ca, and climate , 2015 .

[14]  Rachel Wood,et al.  Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding , 2015, Geobiology.

[15]  A. Nédélec,et al.  Aragonite Crystal Fans In Neoproterozoic Cap Carbonates: A Case Study From Brazil and Implications For the Post-Snowball Earth Coastal Environment , 2015 .

[16]  Linda C. Kah,et al.  Deep‐water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites , 2015, Geobiology.

[17]  Christopher P. Reed,et al.  Enigmatic chambered structures in Cryogenian reefs: The oldest sponge-grade organisms? , 2014 .

[18]  J. Grotzinger,et al.  Facies, stratigraphy, and evolution of a middle Ediacaran carbonate ramp: Khufai Formation, Sultanate of Oman , 2014 .

[19]  M. Wallace,et al.  Marine cements reveal the structure of an anoxic, ferruginous Neoproterozoic ocean , 2014, Journal of the Geological Society.

[20]  R. Mahon,et al.  Geochronologic and stratigraphic constraints on the Mesoproterozoic and Neoproterozoic Pahrump Group, Death Valley, California: A record of the assembly, stability, and breakup of Rodinia , 2014 .

[21]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[22]  F. Mackenzie,et al.  Geologic history of seawater: A MAGic approach to carbon chemistry and ocean ventilation , 2013 .

[23]  M. Wingate,et al.  Globally synchronous Marinoan deglaciation indicated by U-Pb geochronology of the Cottons Breccia, Tasmania, Australia , 2013 .

[24]  D. Fowle,et al.  Surface chemistry allows for abiotic precipitation of dolomite at low temperature , 2013, Proceedings of the National Academy of Sciences.

[25]  F. Corsetti,et al.  Formerly‐Aragonite Seafloor Fans from Neoproterozoic Strata, Death Valley and Southeastern Idaho, United States: Implications for “Cap Carbonate” Formation and Snowball Earth , 2013 .

[26]  L. Kump The Role of Seafloor Hydrothermal Systems in the Evolution of Seawater Composition During the Phanerozoic , 2013 .

[27]  A. J. Kaufman,et al.  Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and eastern California , 2012 .

[28]  S. Gorb,et al.  Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma , 2012 .

[29]  M. Wallace,et al.  Regional recognition of the Neoproterozoic Sturtian–Marinoan boundary, Northern and Central Adelaide Geosyncline, South Australia , 2012 .

[30]  M. Wallace,et al.  Synsedimentary diagenesis in a Cryogenian reef complex: Ubiquitous marine dolomite precipitation , 2012 .

[31]  Linda C. Kah,et al.  Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and global isotopic trends , 2012 .

[32]  R. Drysdale,et al.  Neoproterozoic aragonite-dolomite seas? Widespread marine dolomite precipitation in Cryogenian reef complexes , 2011 .

[33]  H. Gies,et al.  Radiaxial-fibrous calcites: A new look at an old problem , 2011 .

[34]  R. Wood Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization , 2011 .

[35]  P. Bots,et al.  The role of SO4 in the switch from calcite to aragonite seas , 2011 .

[36]  A. Knoll,et al.  Sedimentary talc in Neoproterozoic carbonate successions , 2010 .

[37]  F. Macdonald,et al.  Sheet-crack cements and early regression in Marinoan (635 Ma) cap dolostones: Regional benchmarks of vanishing ice-sheets? , 2010 .

[38]  J. Ries Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification , 2010 .

[39]  S. Porter Calcite and aragonite seas and the de novo acquisition of carbonate skeletons , 2010, Geobiology.

[40]  J. Grotzinger,et al.  Sedimentology, diagenesis, and stratigraphic occurrence of giant ooids in the Ediacaran Rainstorm Member, Johnnie Formation, Death Valley region, California , 2010 .

[41]  B. Windley,et al.  87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian carbonates below the Port Askaig Glaciogenic Formation, Scotland , 2010 .

[42]  A. Putnis,et al.  Fluid-induced processes: metasomatism and metamorphism , 2010 .

[43]  M. Wallace,et al.  Interglacial carbonates of the Cryogenian Umberatana Group, northern Flinders Ranges, South Australia , 2009 .

[44]  M. Beyth,et al.  Cryogenian slate-carbonate sequences of the Tambien Group, Northern Ethiopia (I): Pre-“Sturtian” chemostratigraphy and regional correlations , 2009 .

[45]  M. Wallace,et al.  Sedimentology and C-isotope geochemistry of the ‘Sturtian’ cap carbonate, South Australia , 2009 .

[46]  M. Wallace,et al.  Facies-dependent δ13C variation from a Cryogenian platform margin, South Australia: Evidence for stratified Neoproterozoic oceans? , 2009 .

[47]  R. Wood,et al.  Eve of biomineralization: Controls on skeletal mineralogy , 2008 .

[48]  R. Hill,et al.  Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential proxy for calcite‐aragonite seas in Precambrian time , 2008, Geobiology.

[49]  G. Ramstein,et al.  A geochemical modelling study of the evolution of the chemical composition of seawater linked to a "snowball" glaciation , 2008 .

[50]  F. Mackenzie,et al.  Chemostatic modes of the ocean-atmosphere-sediment system through Phanerozoic time , 2008, Mineralogical Magazine.

[51]  J. Greinert,et al.  Silicate weathering in anoxic marine sediments , 2008, Mineralogical Magazine.

[52]  M. Babinski,et al.  Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events , 2007 .

[53]  M. Corkeron ‘Cap carbonates’ and Neoproterozoic glacigenic successions from the Kimberley region, north‐west Australia , 2007 .

[54]  F. Corsetti,et al.  Trends in oolite dolomitization across the Neoproterozoic–Cambrian boundary: A case study from Death Valley, California , 2006 .

[55]  P. Srivastava Meso–Neoproterozoic coated grains and palaeoecology of associated microfossils: The Deoban Limestone, Lesser Himalaya, India , 2006 .

[56]  N. Christie‐Blick,et al.  Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China , 2006 .

[57]  M. Leng,et al.  The Tambien Group, Ethiopia: An early Cryogenian (ca. 800-735 Ma) Neoproterozoic sequence in the Arabian-Nubian Shield , 2006 .

[58]  T. Peryt,et al.  Chemical composition of seawater in Neoproterozoic: Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia) , 2006 .

[59]  R. V. Demicco,et al.  Model of seawater composition for the Phanerozoic , 2005 .

[60]  J. Grotzinger,et al.  Carbonate deposition and hydrocarbon reservoir development at the Precambrian–Cambrian boundary: The Ara Group in South Oman , 2005 .

[61]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[62]  Wei Wang,et al.  U-Pb Ages from the Neoproterozoic Doushantuo Formation, China , 2005, Science.

[63]  K. Hoffmann,et al.  U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation , 2004 .

[64]  Erik Flügel,et al.  Microfacies of Carbonate Rocks: Analysis, Interpretation and Application , 2004 .

[65]  R. Dalrymple,et al.  A sedimentary prelude to Marinoan glaciation, Cryogenian (Middle Neoproterozoic) Keele Formation, Mackenzie Mountains, northwestern Canada , 2004 .

[66]  T. Lowenstein,et al.  Seawater chemistry and the advent of biocalcification , 2004 .

[67]  J. Dickson Echinoderm Skeletal Preservation: Calcite-Aragonite Seas and the Mg/Ca Ratio of Phanerozoic Oceans , 2004 .

[68]  M. Tucker,et al.  Diagenesis and Geochemistry of Upper Muschelkalk (Triassic) buildups and associated facies in Catalonia (NE Spain): a paper dedicated to Francesc Calvet , 2004 .

[69]  N. Christie‐Blick,et al.  Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates , 2003, Nature.

[70]  C. Fielding,et al.  Marine origin for Precambrian, carbonate-hosted magnesite? , 2003 .

[71]  L. Hardie Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas , 2003 .

[72]  J. Horita,et al.  Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites , 2002 .

[73]  A. J. Kaufman,et al.  The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? , 2002 .

[74]  A. George,et al.  Glacial incursion on a Neoproterozoic carbonate platform in the Kimberley region, Australia , 2001 .

[75]  T. K. Kyser,et al.  Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global glacial meltdown , 2001 .

[76]  V. Gostin,et al.  A chemostratigraphic overview of the late Cryogenian interglacial sequence in the Adelaide Fold-Thrust Belt, South Australia , 2001 .

[77]  A. Knoll,et al.  Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia , 2000, Paleobiology.

[78]  S. Burns,et al.  Dolomite formation and biogeochemical cycles in the Phanerozoic , 2000 .

[79]  S. Stanley,et al.  Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry , 1998 .

[80]  A. J. Kaufman,et al.  A composite reference section for terminal proterozoic strata of southern Namibia. , 1998, Journal of sedimentary research. Section A, Sedimentary petrology and processes : an international journal of SEPM.

[81]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[82]  A. J. Kaufman,et al.  Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform , 1997 .

[83]  M. Kennedy Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones; deglaciation, delta 13 C excursions, and carbonate precipitation , 1996 .

[84]  J. Grotzinger,et al.  Herringbone Calcite: Petrography and Environmental Significance , 1996 .

[85]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[86]  S. Hall,et al.  Petrology and diagenetic evolution of Neoproterozoic ooids (Libby Formation, western Montana, U.S.A.) , 1993 .

[87]  P. A. Baker,et al.  Experimental and Natural Mimetic Dolomitization of Aragonite Ooids , 1993 .

[88]  M. Tucker The Precambrian–Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and biomineralization , 1992, Journal of the Geological Society.

[89]  J. Grotzinger,et al.  1.08 Ga diabase sills in the Pahrump Group, California: Implications for development of the Cordilleran miogeocline , 1992 .

[90]  M. Walter The Adelaide Geosyncline: Late proterozoic stratigraphy, sedimentation, palaeontology and tectonics , 1991 .

[91]  A. Hoppe,et al.  Late Proterozoic aragonitic cement crusts, Bambuí Group, Minas Gerais, Brazil , 1990 .

[92]  V. Gostin,et al.  ACRAMAN IMPACT EJECTA AND HOST SHALES - EVIDENCE FOR LOW-TEMPERATURE MOBILIZATION OF IRIDIUM AND OTHER PLATINOIDS , 1990 .

[93]  M. Wallace ORIGIN OF DOLOMITIZATION ON THE BARBWIRE TERRACE, CANNING BASIN, WESTERN AUSTRALIA , 1990 .

[94]  B. Wilkinson,et al.  Sedimentary carbonate record of calcium-magnesium cycling , 1989 .

[95]  M. Tucker Carbon isotopes and Precambrian—Cambrian boundary geology, South Australia: ocean basin formation, seawater chemistry and organic evolution , 1989 .

[96]  J. Rimstidt,et al.  Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites , 1989 .

[97]  P. Southgate Relationships between cyclicity and stromatolite form in the Late Proterozoic Bitter Springs Formation, Australia , 1989 .

[98]  D. Aissaoui Magnesian calcite cements and their diagenesis: dissolution and dolomitization, Mururoa Atoll , 1988 .

[99]  W. Zempolich,et al.  Diagenesis of late Proterozoic carbonates; the Beck Spring Dolomite of eastern California , 1988 .

[100]  B. Spiro,et al.  Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen , 1987 .

[101]  M. Tucker Formerly Aragonitic Limestones Associated with Tillites in the Late Proterozoic of Death Valley, California , 1986 .

[102]  D. Aissaoui Botryoidal aragonite and its diagenesis , 1985 .

[103]  M. Tucker Calcitized aragonite ooids and cements from the Late Precambrian Biri Formation of southern Norway , 1985 .

[104]  M. Hambrey,et al.  The Vendian succession of northeastern Spitsbergen: Petrogenesis of a dolomite-tillite association☆ , 1984 .

[105]  M. Tucker Calcitic, aragonitic and mixed calcitic-aragonitic ooids from the mid-Proterozoic Belt Supergroup, Montana , 1984 .

[106]  M. Tucker Diagenesis, Geochemistry, and Origin of a Precambrian Dolomite: the Beck Spring Dolomite of Eastern California , 1983 .

[107]  P. Sandberg,et al.  An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy , 1983, Nature.

[108]  J. Dickson Graphical modelling of crystal aggregates and its relevance to cement diagnosis , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[109]  M. Walter,et al.  The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: Examples from the Proterozoic of Australia and the Cainozoic of Antarctica , 1983 .

[110]  D. Sibley The Origin of Common Dolomite Fabrics: Clues from the Pliocene , 1982 .

[111]  F. Mackenzie,et al.  Tectonic controls of Phanerozoic sedimentary rock cycling , 1981, Journal of the Geological Society.

[112]  A. Andrews Saponite and celadonite in layer 2 basalts, DSDP Leg 37 , 1980 .

[113]  I. Fairchild Sedimentation and origin of a late Precambrian dolomite from Scotland , 1980 .

[114]  S. Mazzullo Calcite Pseudospar Replacive of Marine Acicular Aragonite, and Implications for Aragonite Cement Diagenesis , 1980 .

[115]  A. Kendall Fascicular-optic Calcite: A Replacement of Bundled Acicular Carbonate Cements , 1977 .

[116]  W. J. Meyers,et al.  Microdolomite inclusions in cloudy prismatic calcites; a proposed criterion for former high-magnesium calcites , 1977 .

[117]  D. H. Zenger Dolomitization and dolomite "dikes" in the Wyman Formation (Precambrian), northeastern Inyo Mountains, California , 1976 .

[118]  R. Folk,et al.  Comparative Fabrics of Length-Slow and Length-Fast Calcite and Calcitized Aragonite in a Holocene Speleothem, Carlsbad Caverns, New Mexico , 1976 .

[119]  P. Davies,et al.  Radial aragonite ooids, Lizard Island, Great Barrier Reef, Queensland, Australia , 1976 .

[120]  P. Sandberg New interpretations of Great Salt Lake ooids and of ancient non‐skeletal carbonate mineralogy , 1975 .

[121]  Robert L. Folk,et al.  The Natural History Of Crystalline Calcium Carbonate: Effect of Magnesium Content And Salinity , 1974 .

[122]  R. Bathurst Carbonate Sediments and Their Diagenesis , 1972 .

[123]  J. D. Hudson Pseudo-pleochroic Calcite in Recrystallized Shell-Limestones , 1962, Geological Magazine.

[124]  R. Wood,et al.  Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform , 2017 .

[125]  M. Wallace,et al.  The Cryogenian Balcanoona reef complexes of the Northern Flinders Ranges: Implications for Neoproterozoic ocean chemistry , 2015 .

[126]  Ariel D. Anbar,et al.  The Geologic History of Seawater , 2014 .

[127]  Y. Du,et al.  Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution , 2013 .

[128]  G. Shields-Zhou,et al.  The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling , 2012 .

[129]  A. Putnis Mineral Replacement Reactions , 2009 .

[130]  R. Dalrymple,et al.  Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: Insights into the Cryogenian ocean and Precambrian cold-water carbonates , 2005 .

[131]  F. Corsetti,et al.  Unusual Aragonite Precipitates in the Neoproterozoic Rainstorm Member of the Johnnie Formation , 2002 .

[132]  A. Knoll,et al.  Lithification and Fabric Genesis in Precipitated Stromatolites and Associated Peritidal Carbonates, Mesoproterozoic Billyakh Group, Siberia , 2000 .

[133]  R. K. Goldhammer,et al.  Evolution of the Neoproterozoic Katakturuk Dolomite Ramp Complex, Northeastern Brooks Range, Alaska , 2000 .

[134]  J. Morse,et al.  Influences of temperature and Mg:Ca ratio on CaCO3 precipitates from seawater , 1997 .

[135]  K. Hoffmann,et al.  A preliminary note on a revised subdivision and regional correlation of the Otavi Group based on glaciogenic diamictites and associated cap dolostones , 1996 .

[136]  Linda C. Kah,et al.  Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. , 1996, Geology.

[137]  A. Knoll,et al.  Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition. , 1993, Palaios.

[138]  J. Dickson Crystal growth diagrams as an aid to interpreting the fabrics of calcite aggregates , 1993 .

[139]  A. Knoll,et al.  Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard). , 1991, Precambrian research.

[140]  A. Knoll,et al.  Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen. , 1990, American journal of science.

[141]  A. Knoll,et al.  Marine pisolites from Upper Proterozoic carbonates of East Greenland and Spitsbergen. , 1989, Sedimentology.

[142]  C. Kerans,et al.  Deepwater Conical Stromatolite Reef, Sulky Formation (Dismal Lakes Group), Middle Proterozoic, N.W.T. , 1988 .

[143]  U. Singh Ooids and Cements from the Late Precambrian of the Flinders Ranges, South Australia , 1987 .

[144]  P. Haines Carbonate shelf and basin sedimentation, late Proterozoic Wonoka Formation, South Australia , 1987 .

[145]  R. M. Owen,et al.  Submarine Hydrothermal Weathering, Global Eustasy, and Carbonate Polymorphism in Phanerozoic Marine Oolites , 1987 .

[146]  P. Sandberg Aragonite Cements and their Occurrence in Ancient Limestones , 1985 .

[147]  A. Kendall Radiaxial Fibrous Calcite: A Reappraisal , 1985 .

[148]  M. Tucker Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites , 1982 .

[149]  L. Simone Ooids: A review , 1980 .

[150]  M. Walter,et al.  Stromatolites from Adelaidean (Late Proterozoic) sequences in central and South Australia , 1979 .

[151]  G. Davies Former magnesian calcite and aragonite submarine cements in upper Paleozoic reefs of the Canadian Arctic: A summary , 1977 .

[152]  R. Folk,et al.  Mg/Ca Ratio and Salinity; Two Controls over Crystallization of Dolomite , 1975 .

[153]  S. Epstein,et al.  LATE PLEISTOCENE DIAGENESIS AND DOLOMITIZATION, NORTH JAMAICA1 , 1970 .

[154]  L. Illing Bahaman Calcareous Sands , 1954 .