On the continuum modeling of carbon nanotubes

We have recently proposed a nanoscale continuum theory for carbon nanotubes. The theory links continuum analysis with atomistic modeling by incorporating interatomic potentials and atomic structures of carbon nanotubes directly into the constitutive law. Here we address two main issues involved in setting up the nanoscale continuum theory for carbon nanotubes, namely the multi-body interatomic potentials and the lack of centrosymmetry in the nanotube structure. We explain the key ideas behind these issues in establishing a nanoscale continuum theory in terms of interatomic potentials and atomic structures.

[1]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[2]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[3]  Angel Rubio,et al.  MECHANICAL AND ELECTRONIC PROPERTIES OF CARBON AND BORON–NITRIDE NANOTUBES , 2000 .

[4]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[5]  T. Halicioǧlu,et al.  Stress Calculations for Carbon Nanotubes , 1998 .

[6]  Paul Geerlings,et al.  Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene , 2000 .

[7]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[8]  Madhu Menon,et al.  Computational nanotechnology with carbon nanotubes and fullerenes , 2001, Comput. Sci. Eng..

[9]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[10]  Sanjay Govindjee,et al.  On the use of continuum mechanics to estimate the properties of nanotubes , 1999 .

[11]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[12]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[13]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[14]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[15]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[16]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[17]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[18]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[19]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[20]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[21]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[22]  A. Rubio,et al.  Elastic properties of single-wall nanotubes , 1999 .

[23]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[24]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[25]  J. Molina,et al.  A TIGHT?BINDING MODEL FOR CALCULATIONS OF STRUCTURES AND PROPERTIES OF GRAPHITIC NANOTUBES , 1996 .

[26]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[27]  J. Z. Liu,et al.  Effect of a rippling mode on resonances of carbon nanotubes. , 2001, Physical review letters.

[28]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[29]  S. Roth,et al.  Scanning force microscopy characterization of individual carbon nanotubes on electrode arrays , 1998 .

[30]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[31]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[32]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[33]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[34]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[35]  P. Bernier,et al.  Elastic and mechanical properties of carbon nanotubes , 1999 .

[36]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[37]  H. Wagner,et al.  Evaluation of Young’s Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy , 1998 .

[38]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[39]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[40]  Huajian Gao,et al.  Continuum and atomistic studies of intersonic crack propagation , 2001 .

[41]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[42]  Bing-Lin Gu,et al.  First-principles study on morphology and mechanical properties of single-walled carbon nanotube , 2001 .

[43]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[44]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[45]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[46]  C. Q. Ru,et al.  Effective bending stiffness of carbon nanotubes , 2000 .

[47]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[48]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[49]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[50]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[51]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[52]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[53]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[54]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[55]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[56]  David Tománek,et al.  Structural rigidity and low frequency vibrational modes of long carbon tubules , 1993 .

[57]  Richard D. James,et al.  A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods , 2000 .

[58]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[59]  Michael Ortiz,et al.  Quasicontinuum models of fracture and plasticity , 1998 .

[60]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[61]  C. Ru,et al.  Elastic buckling of single-walled carbon nanotube ropes under high pressure , 2000 .

[62]  P. Scharff,et al.  Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes , 2000 .