The genome of the reef-building glass sponge Aphrocallistes vastus provides insights into silica biomineralization

Well-annotated and contiguous genomes are an indispensable resource for understanding the evolution, development, and metabolic capacities of organisms. Sponges, an ecologically important non-bilaterian group of primarily filter-feeding sessile aquatic organisms, are underrepresented with respect to available genomic resources. Here we provide a high-quality and well-annotated genome of Aphrocallistes vastus, a glass sponge (Porifera: Hexactinellida) that forms large reef structures off the coast of British Columbia (Canada). We show that its genome is approximately 80 Mb, small compared to most other metazoans, and contains nearly 2500 nested genes, more than other genomes. Hexactinellida is characterized by a unique skeletal architecture made of amorphous silicon dioxide (SiO2), and we identified 419 differentially expressed genes between the osculum, i.e. the vertical growth zone of the sponge, and the main body. Among the upregulated ones, mineralization-related genes such as glassin, as well as collagens and actins, dominate the expression profile during growth. Silicateins, suggested being involved in silica mineralization, especially in demosponges, were not found at all in the A. vastus genome and suggests that the underlying mechanisms of SiO2 deposition in the Silicea sensu stricto (Hexactinellida + Demospongiae) may not be homologous.

[1]  P. Schupp,et al.  Expanded sampling of New Zealand glass sponges (Porifera: Hexactinellida) provides new insights into biodiversity, chemodiversity, and phylogeny of the class , 2023, PeerJ.

[2]  S. Watabe,et al.  A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster , 2022, DNA research : an international journal for rapid publication of reports on genes and genomes.

[3]  T. Pérez,et al.  The terminology of sponge spicules , 2022, Journal of morphology.

[4]  S. Degnan,et al.  Distribution and diversity of ROS-generating enzymes across the animal kingdom, with a focus on sponges (Porifera) , 2022, BMC Biology.

[5]  J. Claverie,et al.  The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes , 2022, bioRxiv.

[6]  H. Touzet,et al.  Porechop_ABI: discovering unknown adapters in Oxford Nanopore Technology sequencing reads for downstream trimming , 2022, bioRxiv.

[7]  A. Lubkowska,et al.  Arrested in Glass: Actin within Sophisticated Architectures of Biosilica in Sponges , 2022, Advanced science.

[8]  P. Schupp,et al.  Rossellid glass sponges (Porifera, Hexactinellida) from New Zealand waters, with description of one new genus and six new species , 2021, ZooKeys.

[9]  R. Green,et al.  A chromosome-scale genome assembly and karyotype of the ctenophore Hormiphora californensis , 2021, G3.

[10]  Fabian Deister,et al.  Slime away: a simple CTAB-based high molecular weight DNA and RNA extraction protocol for "difficult" invertebrates (rev20200518) v1 , 2021, protocols.io.

[11]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[12]  Hongkun Zheng,et al.  The genome of Nautilus pompilius illuminates eye evolution and biomineralization , 2021, Nature Ecology & Evolution.

[13]  Mile Šikić,et al.  Time- and memory-efficient genome assembly with Raven , 2021, Nature Computational Science.

[14]  O. Voigt,et al.  Carbonic Anhydrases: An Ancient Tool in Calcareous Sponge Biomineralization , 2021, Frontiers in Genetics.

[15]  Ramón E. Rivera-Vicéns,et al.  TransPi – a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly , 2021, bioRxiv.

[16]  Lei Chen,et al.  Structures of human dual oxidase 1 complex in low-calcium and high-calcium states , 2021, Nature communications.

[17]  R. J. Best,et al.  Natural hybrid silica/protein superstructure at atomic resolution , 2020, Proceedings of the National Academy of Sciences.

[18]  J. Aizenberg,et al.  Mechanically robust lattices inspired by deep-sea glass sponges , 2020, Nature Materials.

[19]  Mario Stanke,et al.  BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database , 2020, bioRxiv.

[20]  Yann Loe Mie,et al.  instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder , 2020, Genome Biology.

[21]  P. Martone,et al.  Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation , 2020, Scientific Reports.

[22]  Sergey Koren,et al.  Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes , 2020, Nature Biotechnology.

[23]  K. Ikeo,et al.  The Scaly-foot Snail genome and implications for the origins of biomineralised armour , 2020, Nature Communications.

[24]  Nadège Guiglielmoni,et al.  Overcoming uncollapsed haplotypes in long-read assemblies of non-model organisms , 2020, BMC Bioinformatics.

[25]  Cyril Matthey-Doret,et al.  Computer vision for pattern detection in chromosome contact maps , 2020, Nature Communications.

[26]  Ramón E. Rivera-Vicéns,et al.  Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri , 2020, Nature Communications.

[27]  Wing-Kin Sung,et al.  HyPo: Super Fast & Accurate Polisher for Long Read Genome Assemblies , 2019, bioRxiv.

[28]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[29]  P. Bork,et al.  Profiling cellular diversity in sponges informs animal cell type and nervous system evolution , 2019, bioRxiv.

[30]  M. Schatz,et al.  GenomeScope 2.0 and Smudgeplots: Reference-free profiling of polyploid genomes , 2019, bioRxiv.

[31]  Jonathan Wood,et al.  Identifying and removing haplotypic duplication in primary genome assemblies , 2019, bioRxiv.

[32]  Geo Pertea,et al.  Transcriptome assembly from long-read RNA-seq alignments with StringTie2 , 2019, Genome Biology.

[33]  N. Satoh,et al.  Medusozoan genomes inform the evolution of the jellyfish body plan , 2019, Nature Ecology & Evolution.

[34]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[35]  Heng Li,et al.  Fast and accurate long-read assembly with wtdbg2 , 2019, Nature Methods.

[36]  M. Baranov,et al.  Efficient silica synthesis from tetra(glycerol)orthosilicate with cathepsin- and silicatein-like proteins , 2018, Scientific Reports.

[37]  I. Amit,et al.  Early metazoan cell type diversity and the evolution of multicellular gene regulation , 2018, Nature Ecology & Evolution.

[38]  Jiongtang Li,et al.  P_RNA_scaffolder: a fast and accurate genome scaffolder using paired-end RNA-sequencing reads , 2018, BMC Genomics.

[39]  S. Leys,et al.  Trophic ecology of glass sponge reefs in the Strait of Georgia, British Columbia , 2018, Scientific Reports.

[40]  Brian Bushnell,et al.  BBMerge – Accurate paired shotgun read merging via overlap , 2017, PloS one.

[41]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[42]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[43]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[44]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[45]  S. Leys,et al.  Spicule and flagellated chamber formation in a growth zone of Aphrocallistes vastus (Porifera, Hexactinellida) , 2017 .

[46]  S. Leys,et al.  Clones or clans: the genetic structure of a deep‐sea sponge, Aphrocallistes vastus, in unique sponge reefs of British Columbia, Canada , 2017, Molecular ecology.

[47]  Niranjan Nagarajan,et al.  Fast and accurate de novo genome assembly from long uncorrected reads. , 2017, Genome research.

[48]  G. Wörheide,et al.  Similar Ratios of Introns to Intergenic Sequence across Animal Genomes , 2016, bioRxiv.

[49]  B. Degnan,et al.  The diversification of the basic leucine zipper family in eukaryotes correlates with the evolution of multicellularity , 2016, BMC Evolutionary Biology.

[50]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[51]  Panos Kalnis,et al.  Karect: accurate correction of substitution, insertion and deletion errors for next-generation sequencing data , 2015, Bioinform..

[52]  J. Weaver,et al.  Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation , 2015, Proceedings of the National Academy of Sciences.

[53]  Selene L. Fernandez-Valverde,et al.  Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica , 2015, BMC Genomics.

[54]  L. Moroz,et al.  Error, signal, and the placement of Ctenophora sister to all other animals , 2015, Proceedings of the National Academy of Sciences.

[55]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[56]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[57]  Leena Salmela,et al.  LoRDEC: accurate and efficient long read error correction , 2014, Bioinform..

[58]  S. Leys,et al.  The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. , 2014, Molecular biology and evolution.

[59]  Jiongtang Li,et al.  L_RNA_scaffolder: scaffolding genomes with transcripts , 2013, BMC Genomics.

[60]  Nicholas A. Sinnott-Armstrong,et al.  BioLite, a Lightweight Bioinformatics Framework with Automated Tracking of Diagnostics and Provenance , 2012, TaPP.

[61]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[62]  M. Maldonado,et al.  Glass sponge reefs as a silicon sink , 2011 .

[63]  O. Schilling,et al.  Proteomic identification of protease cleavage sites characterizes prime and non-prime specificity of cysteine cathepsins B, L, and S. , 2011, Journal of proteome research.

[64]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[65]  P. Donoghue,et al.  Evolutionary Origins of Animal Skeletal Biomineralization , 2011, Cells Tissues Organs.

[66]  Y. Kulchin,et al.  Silicatein Genes in Spicule-Forming and Nonspicule-forming Pacific Demosponges , 2010, Marine Biotechnology.

[67]  P. Wincker,et al.  Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa. , 2010, RNA.

[68]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[69]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[70]  G. Gyapay,et al.  Chætognath transcriptome reveals ancestral and unique features among bilaterians , 2008, Genome Biology.

[71]  Werner Müller,et al.  Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges , 2008, Cell and Tissue Research.

[72]  Muhammad Nawaz Tahir,et al.  Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. , 2008, Journal of structural biology.

[73]  Gert Wörheide,et al.  Sponge Paleogenomics Reveals an Ancient Role for Carbonic Anhydrase in Skeletogenesis , 2007, Science.

[74]  M. Blaxter,et al.  Operon Conservation and the Evolution of trans-Splicing in the Phylum Nematoda , 2006, PLoS genetics.

[75]  V. Tunnicliffe,et al.  Patterns of glass sponge (Porifera, Hexactinellida) distribution in coastal waters of British Columbia, Canada , 2004 .

[76]  I. Sarashina,et al.  Structure and expression of an unusually acidic matrix protein of pearl oyster shells. , 2004, Biochemical and biophysical research communications.

[77]  Nicole Poulsen,et al.  Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[79]  S. Leys The Choanosome of Hexactinellid Sponges , 1999 .

[80]  G. Stucky,et al.  Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Davis Surprising diversity and distribution of spliced leader RNAs in flatworms. , 1997, Molecular and biochemical parasitology.

[82]  S. Carr,et al.  Autocatalytic Activation of Human Cathepsin K* , 1997, The Journal of Biological Chemistry.

[83]  F. Ausubel,et al.  Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. , 1996, The Plant cell.

[84]  R. Leinfelder,et al.  The origin of Jurassic reefs: Current research developments and results , 1994 .

[85]  J. Barrie,et al.  Holocene sponge bioherms on the western Canadian continental shelf , 1991 .

[86]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[87]  G. McCormack,et al.  Silicatein expression in Haliclona indistincta (Phylum Porifera, Order Haplosclerida) at different developmental stages , 2019, Development Genes and Evolution.

[88]  Mario Stanke,et al.  Whole-Genome Annotation with BRAKER. , 2019, Methods in molecular biology.

[89]  K. Shimizu,et al.  Exploration of Genes Associated with Sponge Silicon Biomineralization in the Whole Genome Sequence of the Hexactinellid Euplectella curvistellata , 2018 .

[90]  S. Leys,et al.  Sponge Reefs of the British Columbia, Canada Coast: Impacts of Climate Change and Ocean Acidification , 2017 .

[91]  S. Pomponi,et al.  Sponge Grounds as Key Marine Habitats: A Synthetic Review of Types, Structure, Functional Roles, and Conservation Concerns , 2016 .

[92]  T. Plivelic,et al.  Structural architecture and solubility of native and modified gliadin and glutenin proteins: non-crystalline molecular and atomic organization , 2014 .

[93]  M. Maldonado,et al.  Deep phylogeny and evolution of sponges (phylum Porifera). , 2012, Advances in marine biology.

[94]  G. Mackie,et al.  The biology of glass sponges. , 2007, Advances in marine biology.

[95]  J. Barrie,et al.  Growth and morphology of a reef-forming glass sponge, Aphrocallistes vastus (Hexactinellida), and implications for recovery from widespread trawl damage , 2007 .

[96]  W. Müller,et al.  Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. , 2003, Progress in molecular and subcellular biology.

[97]  J. Barrie,et al.  Discovery of a “Living Dinosaur”: Globally unique modern hexactinellid sponge reefs off British Columbia, Canada , 2001 .

[98]  G. Stucky,et al.  Silicatein alpha: cathepsin L-like protein in sponge biosilica. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[99]  S. Lindskog Structure and mechanism of carbonic anhydrase. , 1997, Pharmacology & therapeutics.