Dark Energy Survey Year 3 results: Optimizing the lens sample in a combined galaxy clustering and galaxy-galaxy lensing analysis

We investigate potential gains in cosmological constraints from the combination of galaxy clustering and galaxy-galaxy lensing by optimizing the lens galaxy sample selection using information from Dark Energy Survey (DES) Year 3 data and assuming the DES Year 1 Metacalibration sample for the sources. We explore easily reproducible selections based on magnitude cuts in $i$-band as a function of (photometric) redshift, $z_{\rm phot}$, and benchmark the potential gains against those using the well established redMaGiC sample. We focus on the balance between density and photometric redshift accuracy, while marginalizing over a realistic set of cosmological and systematic parameters. Our optimal selection, the MagLim sample, satisfies $i < 4 \, z_{\rm phot} + 18$ and has $\sim 30\%$ wider redshift distributions but $\sim 3.5$ times more galaxies than redMaGiC. Assuming a wCDM model and equivalent scale cuts to mitigate nonlinear effects, this leads to $40\%$ increase in the figure of merit for the pair combinations of $\Omega_m$, $w$, and $\sigma_8$, and gains of $16\%$ in $\sigma_8$, $10\%$ in $\Omega_m$, and $12\%$ in $w$. Similarly, in LCDM we find an improvement of $19\%$ and $27\%$ on $\sigma_8$ and $\Omega_m$, respectively. We also explore flux-limited samples with a flat magnitude cut finding that the optimal selection, $i < 22.2$, has $\sim 7$ times more galaxies and $\sim 20\%$ wider redshift distributions compared to MagLim, but slightly worse constraints. We show that our results are robust with respect to the assumed galaxy bias and photometric redshift uncertainties with only moderate further gains from increased number of tomographic bins or the inclusion of bin cross-correlations, except in the case of the flux-limited sample, for which these gains are more significant.

[1]  H. Hoekstra,et al.  Clustering of red sequence galaxies in the fourth data release of the Kilo-Degree Survey , 2020, Astronomy &amp; Astrophysics.

[2]  J. Frieman,et al.  Dark Energy Survey Year 3 Results: Galaxy clustering and systematics treatment for lens galaxy samples , 2021, Monthly Notices of the Royal Astronomical Society.

[3]  D. Gerdes,et al.  Dark Energy Survey Year 3 Results: Photometric Data Set for Cosmology , 2020, The Astrophysical Journal Supplement Series.

[4]  H. Hoekstra,et al.  KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints , 2020, Astronomy & Astrophysics.

[5]  A. Blanchard,et al.  Validating the Fisher approach for stage IV spectroscopic surveys , 2020, Astronomy & Astrophysics.

[6]  Xiao Fang,et al.  Cosmology with the Roman Space Telescope – multiprobe strategies , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  J. Frieman,et al.  Dark Energy Survey Year 3 Results: Calibration of Lens Sample Redshift Distributions using Clustering Redshifts with BOSS/eBOSS , 2020, 2012.12826.

[8]  J. Newman,et al.  Clustering of LRGs in the DECaLS DR8 Footprint: Distance Constraints from Baryon Acoustic Oscillations Using Photometric Redshifts , 2020, The Astrophysical Journal.

[9]  T. Eifler,et al.  2D-FFTLog: efficient computation of real-space covariance matrices for galaxy clustering and weak lensing , 2020, 2004.04833.

[10]  D. Weinberg,et al.  Cosmology with the Wide-Field Infrared Survey Telescope -- Synergies with the Rubin Observatory Legacy Survey of Space and Time , 2020, 2004.04702.

[11]  J. Newman,et al.  Tomographic galaxy clustering with the Subaru Hyper Suprime-Cam first year public data release , 2019, Journal of Cosmology and Astroparticle Physics.

[12]  T. Eifler,et al.  Beyond Limber: efficient computation of angular power spectra for galaxy clustering and weak lensing , 2019, Journal of Cosmology and Astroparticle Physics.

[13]  D. Gerdes,et al.  Blinding multiprobe cosmological experiments , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  M. Zaldarriaga,et al.  Cosmological parameters from the BOSS galaxy power spectrum , 2019, Journal of Cosmology and Astroparticle Physics.

[15]  F. Beutler,et al.  The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  A. Leauthaud,et al.  Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data , 2019, Publications of the Astronomical Society of Japan.

[17]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[18]  J. Frieman,et al.  Optimizing galaxy samples for clustering measurements in photometric surveys , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  E. Krause,et al.  Controlling and leveraging small-scale information in tomographic galaxy–galaxy lensing , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  R. Nichol,et al.  Euclid preparation , 2019, Astronomy & Astrophysics.

[21]  A R Walker,et al.  Cosmological Constraints from Multiple Probes in the Dark Energy Survey. , 2018, Physical review letters.

[22]  J. E. Ruhl,et al.  Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions , 2018, Physical Review D.

[23]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[24]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[25]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[26]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[27]  D. Gerdes,et al.  Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations , 2017, Monthly Notices of the Royal Astronomical Society.

[28]  A. I. Salvador,et al.  Dark Energy Survey year 1 results: galaxy sample for BAO measurement , 2017, Monthly Notices of the Royal Astronomical Society.

[29]  Eric Suchyta,et al.  DES science portal: Computing photometric redshifts , 2017, Astron. Comput..

[30]  N. E. Sommer,et al.  Dark Energy Survey year 1 results: Galaxy clustering for combined probes , 2017, Physical Review D.

[31]  B. Yanny,et al.  Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing , 2017, Physical Review D.

[32]  N. E. Sommer,et al.  Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies , 2017, Monthly Notices of the Royal Astronomical Society.

[33]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[34]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[35]  D. A. García-Hernández,et al.  University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .

[36]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[37]  Edwin Valentijn,et al.  KiDS+GAMA : cosmology constraints from a joint analysis of cosmic shear, galaxy-galaxy lensing, and angular clustering , 2017, 1706.05004.

[38]  N. E. Sommer,et al.  Dark Energy Survey Year 1 results: Cross-correlation redshifts - methods and systematics characterization , 2017, 1709.00992.

[39]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses , 2017, 1706.09359.

[40]  B. Yanny,et al.  Forward Global Photometric Calibration of the Dark Energy Survey , 2017, 1706.01542.

[41]  N. E. Sommer,et al.  OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release , 2017, 1708.04526.

[42]  Daniel S. Katz,et al.  The Journal of Open Source Software , 2017 .

[43]  J. Schaye,et al.  The separate and combined effects of baryon physics and neutrino free-streaming on large-scale structure , 2017, 1702.02064.

[44]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[45]  A. Bonaldi,et al.  SKA weak lensing - III. Added value of multiwavelength synergies for the mitigation of systematics , 2016, 1606.03451.

[46]  Tim Eifler,et al.  COSMOLIKE - cosmological likelihood analyses for photometric galaxy surveys , 2016, 1601.05779.

[47]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[48]  J. Rademacker,et al.  Review of Multibody Charm Analyses , 2016 .

[49]  Gong-Bo Zhao,et al.  Information Gain in Cosmology: From the Discovery of Expansion to Future Surveys , 2016, 1606.06273.

[50]  Gong-Bo Zhao,et al.  CosmicFish Implementation Notes V1.0 , 2016, 1606.06268.

[51]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[52]  J. Vicente,et al.  DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting , 2015, 1511.07623.

[53]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[54]  R. J. Brunner,et al.  Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data , 2015, 1507.05360.

[55]  Iftach Sadeh,et al.  ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.

[56]  Samuel Hinton,et al.  ChainConsumer , 2016, J. Open Source Softw..

[57]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[58]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[59]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[60]  Liverpool John Moores University,et al.  The impact of galaxy formation on the total mass, mass profile and abundance of haloes , 2014, 1402.4461.

[61]  S. Borgani,et al.  The effect of active galactic nuclei feedback on the halo mass function , 2014, 1402.1493.

[62]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[63]  G. Zamorani,et al.  The VIMOS Public Extragalactic Survey (VIPERS) - First Data Release of 57 204 spectroscopic measurements , 2013, 1310.1008.

[64]  M. Takada,et al.  Power spectrum super-sample covariance , 2013, 1302.6994.

[65]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[66]  A. Lewis,et al.  Recovering 3D clustering information with angular correlations , 2012, 1207.6487.

[67]  J. Weller,et al.  On the validity of cosmological Fisher matrix forecasts , 2012, 1205.3984.

[68]  Anthony Challinor,et al.  CMB power spectrum parameter degeneracies in the era of precision cosmology , 2012, 1201.3654.

[69]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[70]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[71]  Y. Mellier,et al.  Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.

[72]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[73]  M. Crocce,et al.  Modelling the angular correlation function and its full covariance in photometric galaxy surveys , 2010, 1004.4640.

[74]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[75]  M. Takada,et al.  The impact of non‐Gaussian errors on weak lensing surveys , 2008, 0810.4170.

[76]  N. Afshordi,et al.  Extended Limber Approximation , 2008, 0809.5112.

[77]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[78]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[79]  P. Schneider,et al.  Analysis of two-point statistics of cosmic shear III. Covariances of shear measures made easy , 2007, 0708.0387.

[80]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[81]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[82]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[83]  Michael Olberg,et al.  Submitted to: , 1992 .

[84]  U. Seljak,et al.  Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.

[85]  B. Jain,et al.  Joint galaxy - lensing observables and the dark energy , 2003, astro-ph/0312395.

[86]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[87]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[88]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[89]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[90]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[91]  A. Lewis,et al.  Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models , 2000 .

[92]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[93]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[94]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[95]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[96]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[97]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[98]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[99]  Max Tegmark,et al.  Karhunen-Loève Eigenvalue Problems in Cosmology: How Should We Tackle Large Data Sets? , 1996, astro-ph/9603021.