Temperature dependence of a diode-pumped cryogenic Er:YAG laser.

We report the laser performance of resonantly diode-pumped Er:YAG from liquid nitrogen temperature to above room temperature. Relative to incident pump power, the best performance was observed at approximately 160 K. Spectroscopy and modeling show that this is due primarily to the changing efficiency of diode pump absorption as the absorption lines broaden with temperature. However, the physics of the Er:YAG system indicates that even with arbitrarily narrow pump linewidth the most efficient laser performance should occur at a temperature somewhat above 77 K. The causes of the temperature dependence are at least qualitatively understood.

[1]  Larry D. Merkle,et al.  Resonant pumping and upconversion in 1.6 μm Er 3+ lasers , 2007 .

[2]  D.C. Brown,et al.  The promise of cryogenic solid-state lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Dmitri Z. Garbuzov,et al.  110W(0.9J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser , 2005 .

[4]  N. Ter-Gabrielyan,et al.  Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[5]  Bahram Zandi,et al.  Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12 , 2005 .

[6]  J. Geusic,et al.  Energy Levels and Crystal-Field Calculations of Neodymium in Yttrium Aluminum Garnet , 1964 .

[7]  V. Fedorov,et al.  Spectroscopic properties and 3 μm stimulated emission of Er3+ ions in the (Y1−xErx)3Al5O12 and (Lu1−xEr3)3Al5O12 garnet crystal systems , 1982 .

[8]  Steven B. Sutton,et al.  115-W Tm:YAG diode-pumped solid-state laser , 1997 .

[9]  Tso Yee Fan,et al.  Cooled Yb:YAG for high-power solid state lasers , 1998, Defense, Security, and Sensing.

[10]  W. Krupke,et al.  Ytterbium solid-state lasers. The first decade , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[12]  Bien Chann,et al.  Cryogenic Yb$^{3+}$-Doped Solid-State Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  T. Fan Heat generation in Nd:YAG and Yb:YAG , 1993 .

[14]  R. Beach CW Theory of quasi-three level end-pumped laser oscillators , 1996 .

[15]  T. Y. Fan,et al.  Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range , 2005 .

[16]  L. Johnson,et al.  COHERENT OSCILLATIONS FROM Tm3+, Ho3+, Yb3+ and Er3+ IONS IN YTTRIUM ALUMINUM GARNET , 1965 .

[17]  Lloyd L. Chase,et al.  Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/ , 1992 .

[18]  V. Osiko,et al.  Inequivalent luminescence centres of Er3+ in gallium garnet single crystals , 1976 .

[19]  Harry Zwick,et al.  Ocular effects of penetrating IR laser wavelengths , 1995, Photonics West.

[20]  S. Setzler,et al.  Efficient 1645-nm Er:YAG laser. , 2004, Optics letters.

[21]  Reid,et al.  Energy levels and correlation crystal-field effects in Er3+-doped garnets. , 1993, Physical review. B, Condensed matter.

[22]  Dmitri Z. Garbuzov,et al.  Resonantly diode laser pumped 1.6-μm-erbium-doped yttrium aluminum garnet solid-state laser , 2005 .

[23]  T. H. Allik,et al.  Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12 , 2005 .

[24]  G. A. Newburgh,et al.  Ultra-low photon defect diode-pumped cryo-cooled Er:YAG laser , 2007, SPIE Defense + Commercial Sensing.

[25]  S. Setzler,et al.  Resonantly pumped eyesafe erbium lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Akio Ikesue,et al.  Ultralow quantum-defect eye-safe Er:Sc2O3 laser. , 2008, Optics letters.

[27]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[28]  Rustin L. Laycock,et al.  Integrated diamond sapphire laser. , 2003, Optics express.