A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes

In a previous paper, we adapted Nitsche's method for the approximation of the linear elastodynamic unilateral contact problem. The space semi-discrete problem was analyzed and some schemes (theta-scheme, Newmark and a new hybrid scheme) were proposed and proved to be well-posed under appropriate CFL conditons. In the present paper we look at the stability properties of the above-mentioned schemes and we achieve the corresponding numerical experiments. In particular we prove and illustrate numerically some interesting stability and (almost) energy conservation properties of Nitsche's semi-discretization combined to the new hybrid scheme.

[1]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[2]  G. Burton Sobolev Spaces , 2013 .

[3]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[4]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[5]  Franz Chouly,et al.  A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .

[6]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[7]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[8]  Laetitia Paoli,et al.  A numerical scheme for impact problems , 1999 .

[9]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[10]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[11]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .

[12]  Matteo Astorino,et al.  An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .

[13]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[14]  Peter Hansbo,et al.  Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .

[15]  J. Pousin,et al.  Numerical approximations of a one dimensional elastodynamic contact problem based on mass redistribution method , 2013 .

[16]  R. Taylor,et al.  Lagrange constraints for transient finite element surface contact , 1991 .

[17]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[18]  Y. Dumont,et al.  Vibrations of a beam between stops: convergence of a fully discretized approximation , 2004 .

[19]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[20]  J. U. Kim,et al.  A boundary thin obstacle problem for a wave equation , 1989 .

[21]  W. Han,et al.  Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .

[22]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[23]  Yves Renard,et al.  The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..

[24]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[25]  P. Tallec,et al.  Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .

[26]  Peter Deuflhard,et al.  A contact‐stabilized Newmark method for dynamical contact problems , 2008 .

[27]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[28]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[29]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[30]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[31]  Patrice Hauret,et al.  Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .

[32]  E. Christiansen,et al.  Handbook of Numerical Analysis , 1996 .

[33]  Michelle Schatzman,et al.  A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .

[34]  E. A. Repetto,et al.  Finite element analysis of nonsmooth contact , 1999 .

[35]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..

[36]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[37]  Rolf Krause,et al.  Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme , 2012 .

[38]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[39]  P. Hansbo,et al.  Nitsche's method combined with space–time finite elements for ALE fluid–structure interaction problems☆ , 2004 .

[40]  Barbara Wohlmuth,et al.  A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .

[41]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[42]  Laetitia Paoli,et al.  Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[44]  Michel Salaün,et al.  Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations , 2013 .

[45]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[46]  Laetitia Paoli,et al.  VIBRATIONS OF A BEAM BETWEEN OBSTACLES. CONVERGENCE OF A FULLY DISCRETIZED APPROXIMATION , 2006 .

[47]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .

[48]  M. Barboteu,et al.  A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects , 2009 .

[49]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[50]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[51]  Carlo D'Angelo,et al.  Numerical approximation with Nitsche's coupling of transient Stokes'/Darcy's flow problems applied to hemodynamics , 2012 .

[52]  B. Heinrich NITSCHE MORTARING FOR PARABOLIC INITIAL-BOUNDARY VALUE PROBLEMS , 2022 .

[53]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[54]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[55]  Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data , 1991 .

[56]  Houari Boumediène Khenous Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .

[57]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[58]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[59]  Jérôme Pousin,et al.  Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary , 2014 .

[60]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[61]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[62]  K. Deimling Multivalued Differential Equations , 1992 .

[63]  David E. Stewart,et al.  Existence of Solutions for a Class of Impact Problems Without Viscosity , 2006, SIAM J. Math. Anal..