A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes
暂无分享,去创建一个
Franz Chouly | Patrick Hild | Yves Renard | P. Hild | Y. Renard | F. Chouly
[1] P. Hansbo,et al. A finite element method for domain decomposition with non-matching grids , 2003 .
[2] G. Burton. Sobolev Spaces , 2013 .
[3] Oscar Gonzalez,et al. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .
[4] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[5] Franz Chouly,et al. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .
[6] Haim Brezis,et al. Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .
[7] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[8] Laetitia Paoli,et al. A numerical scheme for impact problems , 1999 .
[9] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[10] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[11] Franz Chouly,et al. An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .
[12] Matteo Astorino,et al. An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .
[13] Erik Burman,et al. Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .
[14] Peter Hansbo,et al. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .
[15] J. Pousin,et al. Numerical approximations of a one dimensional elastodynamic contact problem based on mass redistribution method , 2013 .
[16] R. Taylor,et al. Lagrange constraints for transient finite element surface contact , 1991 .
[17] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[18] Y. Dumont,et al. Vibrations of a beam between stops: convergence of a fully discretized approximation , 2004 .
[19] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[20] J. U. Kim,et al. A boundary thin obstacle problem for a wave equation , 1989 .
[21] W. Han,et al. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .
[22] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[23] Yves Renard,et al. The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..
[24] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..
[25] P. Tallec,et al. Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .
[26] Peter Deuflhard,et al. A contact‐stabilized Newmark method for dynamical contact problems , 2008 .
[27] Franz Chouly,et al. A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..
[28] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[29] F. Armero,et al. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .
[30] Franz Chouly,et al. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..
[31] Patrice Hauret,et al. Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .
[32] E. Christiansen,et al. Handbook of Numerical Analysis , 1996 .
[33] Michelle Schatzman,et al. A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .
[34] E. A. Repetto,et al. Finite element analysis of nonsmooth contact , 1999 .
[35] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..
[36] Patrick Laborde,et al. Mass redistribution method for finite element contact problems in elastodynamics , 2008 .
[37] Rolf Krause,et al. Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme , 2012 .
[38] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[39] P. Hansbo,et al. Nitsche's method combined with space–time finite elements for ALE fluid–structure interaction problems☆ , 2004 .
[40] Barbara Wohlmuth,et al. A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .
[41] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[42] Laetitia Paoli,et al. Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[43] Yves Renard,et al. Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .
[44] Michel Salaün,et al. Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations , 2013 .
[45] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[46] Laetitia Paoli,et al. VIBRATIONS OF A BEAM BETWEEN OBSTACLES. CONVERGENCE OF A FULLY DISCRETIZED APPROXIMATION , 2006 .
[47] Philippe G. Ciarlet,et al. The Finite Element Method for Elliptic Problems. , 1981 .
[48] M. Barboteu,et al. A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects , 2009 .
[49] P. Alart,et al. A generalized Newton method for contact problems with friction , 1988 .
[50] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[51] Carlo D'Angelo,et al. Numerical approximation with Nitsche's coupling of transient Stokes'/Darcy's flow problems applied to hemodynamics , 2012 .
[52] B. Heinrich. NITSCHE MORTARING FOR PARABOLIC INITIAL-BOUNDARY VALUE PROBLEMS , 2022 .
[53] Alexandre Ern,et al. Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..
[54] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[55] Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data , 1991 .
[56] Houari Boumediène Khenous. Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .
[57] T. Laursen,et al. Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.
[58] P. Hansbo,et al. A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .
[59] Jérôme Pousin,et al. Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary , 2014 .
[60] Peter Hansbo,et al. Nitsche's method for interface problems in computa‐tional mechanics , 2005 .
[61] P. Wriggers,et al. A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .
[62] K. Deimling. Multivalued Differential Equations , 1992 .
[63] David E. Stewart,et al. Existence of Solutions for a Class of Impact Problems Without Viscosity , 2006, SIAM J. Math. Anal..