Compatible geometric matchings

This paper studies non-crossing geometric perfect matchings. Two such perfect matchings are compatible if they have the same vertex set and their union is also non-crossing. Our first result states that for any two perfect matchings M and M ′ of the same set of n points, for some k ∈ O(log n), there is a sequence of perfect matchings M = M0, M1, . . . , Mk = M , such that each Mi is compatible with Mi+1. This improves the previous best bound of k ≤ n− 2. We then study the conjecture: every perfect matching with an even number of edges has an edge-disjoint compatible perfect matching. We introduce a sequence of stronger conjectures that imply this conjecture, and prove the strongest of these conjectures in the case of perfect matchings that consist of vertical and horizontal segments. Finally, we prove that every perfect matching with n edges has an edge-disjoint compatible matching with approximately 4n/5 edges.

[1]  Mamoru Watanabe,et al.  On a Counterexample to a Conjecture of Mirzaian , 1992, Comput. Geom..

[2]  András Frank,et al.  Graph Orientations with Edge-connection and Parity Constraints , 2002, Comb..

[3]  Andranik Mirzaian Hamiltonian Triangulations and Circumscribing Polygons of Disjoint Line Segments , 1992, Comput. Geom..

[4]  András Frank,et al.  An Orientation Theorem with Parity Conditions , 1999, IPCO.

[5]  Csaba D. Tóth,et al.  Convex partitions with 2-edge connected dual graphs , 2007, CCCG.

[6]  Franz Aurenhammer,et al.  Sequences of spanning trees and a fixed tree theorem , 2002, Comput. Geom..

[7]  János Pach,et al.  Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets , 2000 .

[8]  Tibor Bisztriczky,et al.  Convexly independent sets , 1990, Comb..

[9]  Hazel Everett,et al.  Planar segment visibility graphs , 2000, Comput. Geom..

[10]  Géza Tóth Finding Convex Sets in Convex Position , 2000, Comb..

[11]  Takeaki Uno,et al.  Transforming spanning trees: A lower bound , 2009, Comput. Geom..

[12]  János Pach,et al.  On circumscribing polygons for line segments , 1998, Comput. Geom..

[13]  Csaba D. Tóth,et al.  Pointed binary encompassing trees: Simple and optimal , 2005, EuroCG.

[14]  T. Bisztriczky,et al.  A generalization of the Erdös-Szekeres convex n-gon theorem. , 1989 .

[15]  Ferran Hurtado Díaz,et al.  Aumentando la conectividad de grafos geométricos , 2005 .

[16]  Godfried T. Toussaint,et al.  Computing simple circuits from a set of line segments , 1990, Discret. Comput. Geom..

[17]  Bettina Speckmann,et al.  Pointed Binary Encompassing Trees , 2004, SWAT.

[18]  Csaba D. Tóth,et al.  Alternating paths through disjoint line segments , 2003, Inf. Process. Lett..

[19]  János Pach,et al.  Canonical Theorems for Convex Sets , 1998, Discret. Comput. Geom..

[20]  Csaba D. Tóth Alternating Paths along Axis-Parallel Segments , 2006, Graphs Comb..

[21]  Franz Aurenhammer,et al.  Transforming spanning trees and pseudo-triangulations , 2005, EuroCG.

[22]  Jorge Urrutia,et al.  Augmenting the connectivity of geometric graphs , 2008, Comput. Geom..

[23]  Prosenjit Bose,et al.  Every Set of Disjoint Line Segments Admits a Binary Tree , 1994, ISAAC.

[24]  Andreas Razen A lower bound for the transformation of compatible perfect matchings , 2008, EUROCG 2008.

[25]  Marc Noy,et al.  Graphs of Triangulations and Perfect Matchings , 2005, Graphs Comb..

[26]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[27]  Godfried T. Toussaint,et al.  On computing simple circuits on a set of line segments , 1986, SCG '86.

[28]  Csaba D. Tóth,et al.  Segment endpoint visibility graphs are Hamiltonian , 2001, Comput. Geom..

[29]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[30]  David Rappaport,et al.  Computing simple circuits from a set of line segments , 1987, SCG '87.

[31]  Zdenek Dvorak,et al.  Noncrossing Hamiltonian paths in geometric graphs , 2007, Discret. Appl. Math..

[32]  Jj Anos Pach Erd} Os-szekeres-type Theorems for Segments and Non-crossing Convex Sets , 1998 .

[33]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .