Compatible geometric matchings
暂无分享,去创建一个
Sergey Bereg | Jorge Urrutia | David R. Wood | Ferran Hurtado | Adrian Dumitrescu | Shakhar Smorodinsky | Diane L. Souvaine | David Rappaport | Mikio Kano | Oswin Aichholzer | Alfredo García Olaverri | Alberto Márquez | Clemens Huemer | J. Urrutia | D. Souvaine | M. Kano | F. Hurtado | O. Aichholzer | S. Smorodinsky | D. Rappaport | A. Márquez | S. Bereg | C. Huemer | A. Dumitrescu | D. Wood | D. Wood | Shakhar Smorodinsky
[1] Mamoru Watanabe,et al. On a Counterexample to a Conjecture of Mirzaian , 1992, Comput. Geom..
[2] András Frank,et al. Graph Orientations with Edge-connection and Parity Constraints , 2002, Comb..
[3] Andranik Mirzaian. Hamiltonian Triangulations and Circumscribing Polygons of Disjoint Line Segments , 1992, Comput. Geom..
[4] András Frank,et al. An Orientation Theorem with Parity Conditions , 1999, IPCO.
[5] Csaba D. Tóth,et al. Convex partitions with 2-edge connected dual graphs , 2007, CCCG.
[6] Franz Aurenhammer,et al. Sequences of spanning trees and a fixed tree theorem , 2002, Comput. Geom..
[7] János Pach,et al. Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets , 2000 .
[8] Tibor Bisztriczky,et al. Convexly independent sets , 1990, Comb..
[9] Hazel Everett,et al. Planar segment visibility graphs , 2000, Comput. Geom..
[10] Géza Tóth. Finding Convex Sets in Convex Position , 2000, Comb..
[11] Takeaki Uno,et al. Transforming spanning trees: A lower bound , 2009, Comput. Geom..
[12] János Pach,et al. On circumscribing polygons for line segments , 1998, Comput. Geom..
[13] Csaba D. Tóth,et al. Pointed binary encompassing trees: Simple and optimal , 2005, EuroCG.
[14] T. Bisztriczky,et al. A generalization of the Erdös-Szekeres convex n-gon theorem. , 1989 .
[15] Ferran Hurtado Díaz,et al. Aumentando la conectividad de grafos geométricos , 2005 .
[16] Godfried T. Toussaint,et al. Computing simple circuits from a set of line segments , 1990, Discret. Comput. Geom..
[17] Bettina Speckmann,et al. Pointed Binary Encompassing Trees , 2004, SWAT.
[18] Csaba D. Tóth,et al. Alternating paths through disjoint line segments , 2003, Inf. Process. Lett..
[19] János Pach,et al. Canonical Theorems for Convex Sets , 1998, Discret. Comput. Geom..
[20] Csaba D. Tóth. Alternating Paths along Axis-Parallel Segments , 2006, Graphs Comb..
[21] Franz Aurenhammer,et al. Transforming spanning trees and pseudo-triangulations , 2005, EuroCG.
[22] Jorge Urrutia,et al. Augmenting the connectivity of geometric graphs , 2008, Comput. Geom..
[23] Prosenjit Bose,et al. Every Set of Disjoint Line Segments Admits a Binary Tree , 1994, ISAAC.
[24] Andreas Razen. A lower bound for the transformation of compatible perfect matchings , 2008, EUROCG 2008.
[25] Marc Noy,et al. Graphs of Triangulations and Perfect Matchings , 2005, Graphs Comb..
[26] C. Nash-Williams. Edge-disjoint spanning trees of finite graphs , 1961 .
[27] Godfried T. Toussaint,et al. On computing simple circuits on a set of line segments , 1986, SCG '86.
[28] Csaba D. Tóth,et al. Segment endpoint visibility graphs are Hamiltonian , 2001, Comput. Geom..
[29] J. O'Rourke. Art gallery theorems and algorithms , 1987 .
[30] David Rappaport,et al. Computing simple circuits from a set of line segments , 1987, SCG '87.
[31] Zdenek Dvorak,et al. Noncrossing Hamiltonian paths in geometric graphs , 2007, Discret. Appl. Math..
[32] Jj Anos Pach. Erd} Os-szekeres-type Theorems for Segments and Non-crossing Convex Sets , 1998 .
[33] W. T. Tutte. On the Problem of Decomposing a Graph into n Connected Factors , 1961 .