Catalytic asymmetric cationic shifts of aliphatic hydrocarbons

[1]  Andrew J. Bendelsmith,et al.  Dual-Hydrogen-Bond Donor and Brønsted Acid Cocatalysis Enables Highly Enantioselective Protio-Semipinacol Rearrangement Reactions. , 2023, Journal of the American Chemical Society.

[2]  Dingding Gao,et al.  Nature-inspired catalytic asymmetric rearrangement of cyclopropylcarbinyl cation , 2023, Science advances.

[3]  B. List,et al.  A Catalytic Asymmetric Hydrolactonization , 2023, Journal of the American Chemical Society.

[4]  K. Houk,et al.  Catalytic asymmetric C–H insertion reactions of vinyl carbocations , 2022, Science.

[5]  O. García Mancheño,et al.  Recent Developments and Trends in Asymmetric Organocatalysis , 2022, European journal of organic chemistry.

[6]  C. Crudden,et al.  2021 Nobel Laureates Recognized in Organocatalysis , 2021, ACS Catalysis.

[7]  B. List,et al.  Organocatalysis emerging as a technology , 2021, Pure and Applied Chemistry.

[8]  J. Ouyang,et al.  Strong and Confined Acids Catalyze Asymmetric Intramolecular Hydroarylations of Unactivated Olefins with Indoles , 2021, Journal of the American Chemical Society.

[9]  B. List,et al.  Confinement as a Unifying Element in Selective Catalysis , 2020, Chem.

[10]  P. Schreiner,et al.  Catalytic enantiocontrol over a non-classical carbocation , 2020, Nature Chemistry.

[11]  Eugene E. Kwan,et al.  Enantioselective Aryl-Iodide-Catalyzed Wagner-Meerwein Rearrangements. , 2020, Journal of the American Chemical Society.

[12]  F. Neese,et al.  Unveiling the Delicate Balance of Steric and Dispersion Interactions in Organocatalysis Using High-Level Computational Methods , 2020, Journal of the American Chemical Society.

[13]  J. Ziller,et al.  Relative and Absolute Structure Assignments of Alkenes Using Crystalline Osmate Derivatives for X-ray Analysis. , 2019, Organic letters.

[14]  L. Cavallo,et al.  Towards the online computer-aided design of catalytic pockets , 2019, Nature Chemistry.

[15]  F. Arnold,et al.  Innovation by Evolution: Bringing New Chemistry to Life (Nobel Lecture). , 2019, Angewandte Chemie.

[16]  Y. Tu,et al.  Lewis Base/Brønsted Acid Co-catalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di- and Tri-substituted Allylic Alcohols. , 2019, Angewandte Chemie.

[17]  C. Farés,et al.  Strong and Confined Acids Enable a Catalytic Asymmetric Nazarov Cyclization of Simple Divinyl Ketones , 2019, Journal of the American Chemical Society.

[18]  Lorna J. Hepworth,et al.  Biocatalysis , 2018, Nature Reviews Methods Primers.

[19]  I. Leito,et al.  Approaching sub-ppm-level asymmetric organocatalysis of a highly challenging and scalable carbon–carbon bond forming reaction , 2018, Synfacts.

[20]  C. Farés,et al.  Activation of olefins via asymmetric Brønsted acid catalysis , 2018, Science.

[21]  Philip S. J. Kaib,et al.  Extremely Active Organocatalysts Enable a Highly Enantioselective Addition of Allyltrimethylsilane to Aldehydes. , 2016, Angewandte Chemie.

[22]  Jianguo Liu,et al.  Enantio- and Regioselective Ir-Catalyzed Hydrogenation of Di- and Trisubstituted Cycloalkenes. , 2016, Journal of the American Chemical Society.

[23]  J. Burés A Simple Graphical Method to Determine the Order in Catalyst , 2016, Angewandte Chemie.

[24]  P. Schreiner,et al.  London dispersion in molecular chemistry--reconsidering steric effects. , 2015, Angewandte Chemie.

[25]  Ryne C. Johnston,et al.  C-H···O non-classical hydrogen bonding in the stereomechanics of organic transformations: theory and recognition. , 2013, Organic & biomolecular chemistry.

[26]  Rajasekhar Reddy Naredla,et al.  Contemporary carbocation chemistry: applications in organic synthesis. , 2013, Chemical reviews.

[27]  H. Kagan,et al.  Early history of asymmetric synthesis: who are the scientists who set up the basic principles and the first experiments? , 2011 .

[28]  D. Tantillo Biosynthesis via carbocations: theoretical studies on terpene formation. , 2011, Natural product reports.

[29]  Luigi Cavallo,et al.  Comparing the enantioselective power of steric and electrostatic effects in transition-metal-catalyzed asymmetric synthesis. , 2010, Chemistry.

[30]  Luigi Cavallo,et al.  Thermodynamics of N-heterocyclic Carbene Dimerization: The Balance of Sterics and Electronics , 2008 .

[31]  A. Pfaltz,et al.  Iridium-catalyzed asymmetric hydrogenation of unfunctionalized, trialkyl-substituted olefins. , 2007, Chemistry, an Asian journal.

[32]  B. Trost,et al.  Palladium-catalyzed asymmetric ring expansion of allenylcyclobutanols: an asymmetric Wagner-Meerwein shift. , 2006, Journal of the American Chemical Society.

[33]  T. Netscher,et al.  Asymmetric Hydrogenation of Unfunctionalized, Purely Alkyl-Substituted Olefins , 2006, Science.

[34]  B. Trost,et al.  A catalytic asymmetric Wagner-Meerwein shift. , 2001, Journal of the American Chemical Society.

[35]  S. M. A. Matesich Entropy of activation of reactions involving rate-determining proton transfer to carbon , 1967 .

[36]  H. Meerwein,et al.  Über die Gleichgewichts‐Isomerie zwischen Bornylchlorid, Isobornylchlorid und Camphen‐chlorhydrat , 1922 .

[37]  G. Wagner,et al.  Ueber die Beziehung der Pinenhaloïdhydrate zu den Haloïdanhydriden des Borneols , 1899 .

[38]  B. List,et al.  IDPi Catalysis. , 2019, Angewandte Chemie.

[39]  W. Knowles Asymmetric Hydrogenations (Nobel Lecture 2001) , 2003 .

[40]  H. Meerwein Über den Reaktionsmechanismus der Umwandlung von Borneol in Camphen; [Dritte Mitteilung über Pinakolinumlagerungen.] , 1914 .