8 Nonlinear time series and macroeconometrics

Publisher Summary This chapter discusses recent advances in econometric techniques that have allowed economists to assess both the validity of the assumption of linear stochastic dynamics and the requirement of exogenous driving forces, and examines two potential types of nonlinear economic time series. The first type is time series generated by a nonlinear map with chaotic properties. The output of the nonlinear map may be observed through an “observer” function which is, perhaps, buffeted with measurement noise. The map itself may be perturbed by exogenous noise. The second type is time series generated by a nonlinear difference equation propagated by additive noise that satisfies a martingale difference property. The chapter emphasizes on testing for nonlinear structure of both types, and on a testing methodology with its origins in the deterministic chaos concept of correlation integrals.

[1]  Ruey S. Tsay,et al.  Testing and Modeling Threshold Autoregressive Processes , 1989 .

[2]  Ruey S. Tsay,et al.  Nonlinear Time-Series Analysis of Stock Volatilities , 1992 .

[3]  R. Frisch Propagation problems and impulse problems in dynamic economics , 1933 .

[4]  Bruce Mizrach,et al.  On Determining the Dimension of Real-Time Stock-Price Data , 1992 .

[5]  Timo Teräsvirta,et al.  POWER OF THE NEURAL NETWORK LINEARITY TEST , 1993 .

[6]  Thanasis Stengos,et al.  Some evidence concerning macroeconomic chaos , 1988 .

[7]  Timo Teräsvirta,et al.  Testing linearity against smooth transition autoregressive models , 1988 .

[8]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[9]  Lars Peter Hansen,et al.  Rational Expectations Econometrics , 1991 .

[10]  R. Meese,et al.  An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination , 1991 .

[11]  Theiler Statistical precision of dimension estimators. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[13]  James M. Nason,et al.  Nonparametric exchange rate prediction , 1990 .

[14]  T. Rao,et al.  An Introduction to Bispectral Analysis and Bilinear Time Series Models , 1984 .

[15]  R. Tsay Nonlinearity tests for time series , 1986 .

[16]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[17]  Simon M. Potter A Nonlinear Approach to U.S. GNP , 1993 .

[18]  Robert Savit,et al.  Dependent variables in broad band continuous time series , 1991 .

[19]  J. Wooldridge A Unified Approach to Robust, Regression-Based Specification Tests , 1990, Econometric Theory.

[20]  B. LeBaron,et al.  Nonlinear Dynamics and Stock Returns , 2021, Cycles and Chaos in Economic Equilibrium.

[21]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[22]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[23]  David Hsieh Chaos and Nonlinear Dynamics: Application to Financial Markets , 1991 .

[24]  M. Denker,et al.  On U-statistics and v. mise’ statistics for weakly dependent processes , 1983 .

[25]  W. Brock,et al.  Statistical Inference Theory for Measures of Complexity in Chaos Theory and Nonlinear Science , 1989 .

[26]  B. LeBaron,et al.  Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence , 1991 .

[27]  Herman J. Bierens,et al.  A consistent conditional moment test of functional form , 1990 .

[28]  Philip Rothman,et al.  The Statistical Properties of Dimension Calculations Using Small Data Sets: Some Economic Applications , 1990 .

[29]  K. Chan,et al.  Testing for threshold autoregression , 1990 .

[30]  William A. Brock,et al.  Diagnostic testing for Nonlinearity Chaos, and General Dependence in Time Series Data , 1991 .

[31]  William A. Brock,et al.  Non-linear dynamical systems: Instability and chaos in economics , 1991 .

[32]  M. Hinich Testing for Gaussianity and Linearity of a Stationary Time Series. , 1982 .

[33]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[34]  Leslie Godfrey Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches , 1988 .

[35]  Whitney K. Newey,et al.  Maximum Likelihood Specification Testing and Conditional Moment Tests , 1985 .

[36]  G. Yule On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers , 1927 .

[37]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[38]  J. Kiefer,et al.  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .

[39]  Agustín Maravall,et al.  An Application of Nonlinear Time Series Forecasting , 1983 .

[40]  W. Brock,et al.  Is the business cycle characterized by deterministic chaos , 1988 .

[41]  Clive W. J. Granger,et al.  Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests , 1993 .

[42]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[43]  P. Phillips,et al.  Testing Covariance Stationarity Under Moment Condition Failure with an Application to Common Stock Returns , 1990 .

[44]  Christina D. Romer Is the Stabilization of the Postwar Economy a Figment of the Data , 1986 .

[45]  R. Savit,et al.  Time series and dependent variables , 1991 .

[46]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[47]  William A. Barnett,et al.  Empirical chaotic dynamics in economics , 1992, Ann. Oper. Res..

[48]  Ronald H. Randles,et al.  On the Asymptotic Normality of Statistics with Estimated Parameters , 1982 .

[49]  M. Rosenblatt Markov Processes, Structure and Asymptotic Behavior , 1971 .

[50]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[51]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[52]  W. Brock,et al.  A Nonparametric Test For Temporal Dependence In A Vector Of Time Series , 1988 .

[53]  Michele Boldrin,et al.  Equilibrium models displaying endogenous fluctuations and chaos: A survey , 1988 .

[54]  W. Brock Distinguishing random and deterministic systems: Abridged version , 1986 .

[55]  Timo Teräsvirta,et al.  Testing linearity in univariate, time series models , 1988 .

[56]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[57]  George Tauchen Diagnostic testing and evaluation of maximum likelihood models , 1985 .

[58]  A. Gallant,et al.  A NONPARAMETRIC APPROACH TO NONLINEAR TIME SERIES ANALYSIS: ESTIMATION AND SIMULATION* , 1993 .

[59]  H. Tong,et al.  On tests for non‐linearity in time series analysis , 1986 .

[60]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[61]  Neville Davies,et al.  A portmanteau test for self-exciting threshold autoregressive-type nonlinearity in time series , 1986 .

[62]  T. Teräsvirta,et al.  Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models , 1992 .

[63]  P. Robinson Consistent Nonparametric Entropy-Based Testing , 1991 .

[64]  A. I. McLeod,et al.  ARMA MODELLING WITH NON-GAUSSIAN INNOVATIONS , 1988 .

[65]  D. M. Keenan,et al.  A Tukey nonadditivity-type test for time series nonlinearity , 1985 .

[66]  Douglas M. Patterson,et al.  A DIAGNOSTIC TEST FOR NONLINEAR SERIAL DEPENDENCE IN TIME SERIES FITTING ERRORS , 1986 .

[67]  A comparison of tests for setar-type non-linearity in time series , 1990 .

[68]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .