Application of the variable projection scheme for frequency-domain full-waveform inversion

ABSTRACTWe found a data calibration scheme for frequency-domain full-waveform inversion (FWI). The scheme is based on the variable projection technique. With this scheme, the FWI algorithm can incorporate the data calibration procedure into the inversion process without introducing additional unknown parameters. The calibration variable for each frequency is computed using a minimum norm solution between the measured and simulated data. This process is directly included in the data misfit cost function. Therefore, the inversion algorithm becomes source independent. Moreover, because all the data points are considered in the calibration process, this scheme increases the robustness of the algorithm. Numerical tests determined that the FWI algorithm can reconstruct velocity distributions accurately without the source waveform information.

[1]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[2]  A. Abubakar,et al.  Simultaneous multifrequency inversion of full-waveform seismic data , 2009 .

[3]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[4]  Aria Abubakar,et al.  Nonlinear Inversion Approaches For Cross-well Electromagnetic Data Collected In Cased-Wells , 2008 .

[5]  Aria Abubakar,et al.  An effective perfectly matched layer design for acoustic fourth-order frequency-domain finite-difference scheme , 2012 .

[6]  P. M. Berg,et al.  Extended contrast source inversion , 1999 .

[7]  Application of Time Domain and Single Frequency Waveform Inversion to Real Data , 2011 .

[8]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[9]  S. Greenhalgh,et al.  Crosshole seismic inversion with normalized full‐waveform amplitude data , 2003 .

[10]  Azzam Haidar,et al.  Seismic wave modeling for seismic imaging , 2009 .

[11]  G. H. F. Gardner,et al.  FORMATION VELOCITY AND DENSITY—THE DIAGNOSTIC BASICS FOR STRATIGRAPHIC TRAPS , 1974 .

[12]  Aria Abubakar,et al.  Inversion algorithms for large-scale geophysical electromagnetic measurements , 2009 .

[13]  A. Abubakar,et al.  Preconditioned non‐linear conjugate gradient method for frequency domain full‐waveform seismic inversion , 2011 .

[14]  Partha S. Routh,et al.  Encoded Simultaneous Source Full-Wavefield Inversion For Spectrally Shaped Marine Streamer Data , 2011 .

[15]  Felix J. Herrmann,et al.  Source Estimation for Frequency-domain FWI with Robust Penalties , 2012 .

[16]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[17]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[18]  P. M. Berg,et al.  Contrast Source Inversion Method: State of Art , 2001 .

[19]  Anton Ziolkowski,et al.  The signature of an air gun array: Computation from near‐field measurements including interactions , 1982 .

[20]  Denes Vigh,et al.  3D prestack plane-wave, full-waveform inversion , 2008 .

[21]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[22]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[23]  James Rickett The variable projection method for waveform inversion with an unknown source function , 2013 .