A Modeling Framework for Studying Quantum Key Distribution System Implementation Nonidealities

Quantum key distribution (QKD) is an innovative technology that exploits the laws of quantum mechanics to generate and distribute unconditionally secure shared key for use in cryptographic applications. However, QKD is a relatively nascent technology where real-world system implementations differ significantly from their ideal theoretical representations. In this paper, we introduce a modeling framework built upon the OMNeT++ discrete event simulation framework to study the impact of implementation nonidealities on QKD system performance and security. Specifically, we demonstrate the capability to study the device imperfections and practical engineering limitations through the modeling and simulation of a polarization-based, prepare and measure BB84 QKD reference architecture. The reference architecture allows users to model and study complex interactions between physical phenomenon and system-level behaviors representative of real-world design and implementation tradeoffs. Our results demonstrate the flexibility of the framework to simulate and evaluate current, future, and notional QKD protocols and components.

[1]  Liu Song-hao,et al.  Plug and Play Systems for Quantum Cryptography , 2004 .

[2]  Duane Anthony Satorius Tension-tuned acousto-optic bandpass filter , 2004 .

[3]  D. Jacques,et al.  Towards the Modeling and Simulation of Quantum Key Distribution Systems , 2014 .

[4]  N. Gisin,et al.  Long-term performance of the SwissQuantum quantum key distribution network in a field environment , 2011, 1203.4940.

[5]  Michael R. Grimaila,et al.  Modeling decoy state Quantum Key Distribution systems , 2015 .

[6]  R. Renner,et al.  An information-theoretic security proof for QKD protocols , 2005, quant-ph/0502064.

[7]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[8]  Gerald Baumgartner,et al.  Performance Evaluations of Quantum Key Distribution System Architectures , 2015, IEEE Security & Privacy.

[9]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[10]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[11]  Michael R. Grimaila,et al.  Modeling Continuous Time Optical Pulses in a Quantum Key Distribution Discrete Event Simulation , 2014 .

[12]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[13]  H. Raedt,et al.  Event-by-event Simulation of Quantum Cryptography Protocols ∗ , 2007, 0708.1734.

[14]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[15]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[16]  Kai Chen,et al.  Field test of a practical secure communication network with decoy-state quantum cryptography. , 2008, Optics express.

[17]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[18]  Valerio Scarani,et al.  The black paper of quantum cryptography: Real implementation problems , 2009, Theor. Comput. Sci..

[19]  Qiaoyan Wen,et al.  Object-Oriented Quantum Cryptography Simulation Model , 2007, Third International Conference on Natural Computation (ICNC 2007).

[20]  Michael R. Grimaila,et al.  Using the Discrete Event System Specification to model Quantum Key Distribution system components , 2015 .

[21]  Tao Zhang,et al.  Field Experiment on a “Star Type” Metropolitan Quantum Key Distribution Network , 2009, IEEE Photonics Technology Letters.

[22]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[23]  Vadim Makarov,et al.  Superlinear threshold detectors in quantum cryptography , 2011, 1106.2119.

[24]  Gabriela Mogos,et al.  Quantum Key Distribution - QKD Simulation , 2015 .

[25]  Ivan P. Kaminow,et al.  Polarization-Maintaining Fibers , 1984 .

[26]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[27]  G. L. Morgan,et al.  Quantum Cryptography over Underground Optical Fibers , 1996, CRYPTO.

[28]  Marcin Niemiec,et al.  Quantum Cryptography Protocol Simulator , 2011, MCSS.

[29]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[30]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[31]  K W Chang,et al.  High-performance single-mode fiber polarization-independent isolators. , 1990, Optics letters.

[32]  M. Mokhtar,et al.  Simulation of Bennet and Brassard 84 protocol with Eve's attacks , 2014, 2014 IEEE 5th International Conference on Photonics (ICP).

[33]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[34]  C. Elliott The DARPA Quantum Network , 2004, quant-ph/0412029.

[35]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[36]  Abudhahir. Buhari,et al.  BB 84 and Noise Immune Quantum Key Distribution Protocols Simulation : An Approach Using Photonic Simulator , .

[37]  Michael R. Grimaila,et al.  Discrete Event Simulation of the quantum channel within a Quantum Key Distribution system , 2015 .

[38]  S. K. Subramaniam,et al.  An efficient modeling and simulation of quantum key distribution protocols using OptiSystem™ , 2012, 2012 IEEE Symposium on Industrial Electronics and Applications.