Computing Optimal Coverability Costs in Priced Timed Petri Nets

We consider timed Petri nets, i.e., unbounded Petri nets where each token carries a real-valued clock. Transition arcs are labeled with time intervals, which specify constraints on the ages of tokens. Our cost model assigns token storage costs per time unit to places, and firing costs to transitions. We study the cost to reach a given control-state. In general, a cost-optimal run may not exist. However, we show that the infimum of the costs is computable.

[1]  Serge Haddad,et al.  Comparison of Different Semantics for Time Petri Nets , 2005, ATVA.

[2]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[3]  David de Frutos-Escrig,et al.  On non-decidability of reachability for timed-arc Petri nets , 1999, PNPM.

[4]  Rüdiger Valk,et al.  The residue of vector sets with applications to decidability problems in Petri nets , 2004, Acta Informatica.

[5]  Gianfranco Ciardo,et al.  Petri Nets with Marking-Dependent Ar Cardinality: Properties and Analysis , 1994, Application and Theory of Petri Nets.

[6]  Klaus Reinhardt,et al.  Reachability in Petri Nets with Inhibitor Arcs , 2008, RP.

[7]  David de Frutos-Escrig,et al.  Decidability of Properties of Timed-Arc Petri Nets , 2000, ICATPN.

[8]  Parosh Aziz Abdulla,et al.  Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness , 2006, Log. Methods Comput. Sci..

[9]  J. Schiff Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[10]  Véronique Bruyère,et al.  On the optimal reachability problem of weighted timed automata , 2007, Formal Methods Syst. Des..

[11]  Parosh Aziz Abdulla,et al.  Timed Petri Nets and BQOs , 2001, ICATPN.

[12]  RaskinJean-François,et al.  On the optimal reachability problem of weighted timed automata , 2007 .

[13]  C. Petri Kommunikation mit Automaten , 1962 .

[14]  Rüdiger Valk,et al.  The residue of vector sets with applications to decidability problems in Petri nets , 1985, Acta Informatica.

[15]  Parosh Aziz Abdulla,et al.  Forward Reachability Analysis of Timed Petri Nets , 2004, FORMATS/FTRTFT.

[16]  L. Dickson Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors , 1913 .

[17]  V. Valero Ruiz,et al.  On non-decidability of reachability for timed-arc Petri nets , 1999, Proceedings 8th International Workshop on Petri Nets and Performance Models (Cat. No.PR00331).

[18]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[19]  Kim G. Larsen,et al.  As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced Timed Automata , 2001, CAV.

[20]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[21]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[22]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[23]  Parosh Aziz Abdulla,et al.  Algorithmic Analysis of Programs with Well Quasi-ordered Domains , 2000, Inf. Comput..

[24]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[25]  Aziz Abdulla and Aletta Nylén Parosh Undecidability of LTL for Timed Petri Nets , 2003 .

[26]  George J. Pappas,et al.  Optimal Paths in Weighted Timed Automata , 2001, HSCC.

[27]  Parosh Aziz Abdulla,et al.  Minimal Cost Reachability/Coverability in Priced Timed Petri Nets , 2009, FoSSaCS.