Error analysis of a fully discrete scheme for time fractional Schrödinger equation with initial singularity

We consider the numerical approximation for a time fractional Schrödinger equation whose solution exhibits an initial weak singularity. A fully discrete scheme is constructed using scheme on graded mesh for the discretiaztion of temporal Caputo derivative and spectral method for spatial discretization. It is shown that with appropriate choice of the grading parameter, the scheme can attain order convergence in temporal direction, where α is the order of time Caputo fractional derivative, and spectral accuracy in spatial direction if the solution is sufficiently smooth in its spatial part. Numerical results confirm the sharpness of the error analysis.

[1]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[2]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[3]  Meng Li,et al.  Galerkin finite element method for nonlinear fractional Schrödinger equations , 2017, Numerical Algorithms.

[4]  Jose L. Gracia,et al.  A Fitted Scheme for a Caputo Initial-Boundary Value Problem , 2018, J. Sci. Comput..

[5]  Meng Li,et al.  A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator , 2018, Appl. Math. Comput..

[6]  Maarten Wyns Convergence analysis of the Modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with nonsmooth initial data , 2015 .

[7]  Natalia Kopteva,et al.  Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions , 2017, Math. Comput..

[8]  Jincheng Ren,et al.  L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity , 2019, Int. J. Model. Simul. Sci. Comput..

[9]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[10]  Jinye Shen Fast Finite Difference Schemes for Time-Fractional Diffusion Equations with a Weak Singularity at Initial Time , 2018, East Asian Journal on Applied Mathematics.

[11]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  Chengming Huang,et al.  A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations , 2019, Numerical Algorithms.

[13]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Ming Cheng,et al.  Bound state for the fractional Schrödinger equation with unbounded potential , 2012 .

[15]  Yong Zhou,et al.  Fractional Schrödinger equations with potential and optimal controls , 2012 .

[16]  Jiwei Zhang,et al.  Unconditionally Convergent L1-Galerkin FEMs for Nonlinear Time-Fractional Schrödinger Equations , 2017, SIAM J. Sci. Comput..

[17]  Xindong Zhang,et al.  Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation , 2014, Numerical Algorithms.

[18]  Mingyu Xu,et al.  Generalized fractional Schrödinger equation with space-time fractional derivatives , 2007 .

[19]  Yingjun Jiang,et al.  Moving finite element methods for time fractional partial differential equations , 2013 .

[20]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[21]  William W. Symes,et al.  Dispersion analysis of numerical wave propagation and its computational consequences , 1995 .

[22]  Hu Chen,et al.  Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem , 2018, J. Sci. Comput..

[23]  Jiwei Zhang,et al.  Sharp Error Estimate of the Nonuniform L1 Formula for Linear Reaction-Subdiffusion Equations , 2018, SIAM J. Numer. Anal..

[24]  Sunil Kumar,et al.  A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system , 2012, Comput. Math. Appl..

[25]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[26]  Leilei Wei,et al.  Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation , 2012 .

[27]  Jungang Wang,et al.  FINITE ELEMENT METHOD FOR TIME-SPACE-FRACTIONAL SCHRÖDINGER EQUATION , 2017 .

[28]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[29]  Meng Li,et al.  A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations , 2018, J. Comput. Phys..