SLIT MAPS AND SCHWARZ-CHRISTOFFEL MAPS FOR MULTIPLY CONNECTED DOMAINS

We review recent derivations of formulas for conformal maps from finitely connected domains with circular holes to canonical radial or circular slit domains . The formulas are infinite products based on simple reflection arguments. An earlier similar derivation of the Schwar z-Christoffel formula for the bounded multiply connected case and recent progress in its numerical implementation ar e also reviewed. We give some sample calculations with a reflection method and an estimate of its accuracy. We also di scuss the relation of our approach to that of D. Crowdy and J. Marshall. In addition, a slit map calculation using La urent series computed by the least squares method in place of the reflection method is given as an example of a possi ble direction for future improvements in the numerics.

[1]  Leslie Greengard,et al.  A Method of Images for the Evaluation of Electrostatic Fields in Systems of Closely Spaced Conducting Cylinders , 1998, SIAM J. Appl. Math..

[2]  Dieter Gaier,et al.  Konstruktive Methoden der konformen Abbildung , 1964 .

[3]  Donald E. Marshall,et al.  Harmonic Measure: Jordan Domains , 2005 .

[4]  Tobin A. Driscoll,et al.  Radial and circular slit maps of unbounded multiply connected circle domains , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  W. Burnside On a Class of Automorphic Functions , 1891 .

[6]  Guo Chun Wen Conformal mappings and boundary value problems , 1992 .

[7]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[8]  辻 正次,et al.  Potential theory in modern function theory , 1959 .

[9]  A DriscollTobin Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996 .

[10]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[11]  Tobin A. Driscoll,et al.  Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains , 2006 .

[12]  Thomas K. DeLillo,et al.  Schwarz-Christoffel Mapping of the Annulus , 2001, SIAM Rev..

[13]  Darren Crowdy,et al.  Green's functions for Laplace's equation in multiply connected domains , 2007 .

[14]  Darren Crowdy,et al.  Schwarz–Christoffel mappings to unbounded multiply connected polygonal regions , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Darren Crowdy,et al.  Computing the Schottky-Klein Prime Function on the Schottky Double of Planar Domains , 2007 .

[16]  Darren Crowdy,et al.  Analytical formulae for the Kirchhoff–Routh path function in multiply connected domains , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Paul Koebe,et al.  Abhandlungen zur Theorie der konformen Abbildung , 1916 .

[18]  Darren Crowdy,et al.  Geometric function theory: a modern view of a classical subject , 2008 .

[19]  Darren Crowdy,et al.  The Schwarz–Christoffel mapping to bounded multiply connected polygonal domains , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Thomas K. DeLillo,et al.  A simplified Fornberg-like method for the conformal mapping of multiply connected regions-Comparisons and crowding , 2007 .

[21]  Gregory F. Lawler,et al.  Conformally Invariant Processes in the Plane , 2005 .

[22]  Thomas K. DeLillo,et al.  Extremal distance, harmonic measure and numerical conformal mapping , 1993 .

[23]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[24]  Rudolf Wegmann,et al.  Chapter 9 – Methods for Numerical Conformal Mapping , 2005 .

[25]  Lloyd N. Trefethen,et al.  Ten Digit Algorithms , 2005 .