Asymptotic behaviour of cellular automata : computation and randomness

L'objet de cette these est l'etude de l'auto-organisation dans les automates cellulaires unidimensionnels.Les automates cellulaires sont un systeme dynamique discret ainsi qu'un modele de calcul massivement parallele, ces deux aspects s'influencant mutuellement. L'auto-organisation est un phenomene ou un comportement organise est observe asymptotiquement, independamment de la configuration initiale. Typiquement, nous considerons que le point initial est tire aleatoirement: etant donnee une mesure de probabilite decrivant une distribution de configurations initiales, nous etudions son evolution sous l'action de l'automate, le comportement asymptotique etant decrit par la(les) mesure(s) limite(s).Notre etude presente deux aspects. D'abord, nous caracterisons les mesures qui peuvent etre atteintes a la limite par les automates cellulaires; ceci correspond aux differents comportements asymptotiques pouvant apparaitre en simulation. Cette approche rejoint divers resultats recents caracterisant des parametres de systemes dynamiques par des conditions de calculabilite, utilisant des outils d'analyse calculable. Il s'agit egalement d'une description de la puissance de calcul des automates cellulaires sur les mesures.Ensuite, nous proposons des outils pour letude de l'auto-organisation dans des classes restreintes. Nous introduisons un cadre d'etude d'automates pouvant etre vus comme un ensemble de particules en interaction, afin d'en deduire des proprietes sur leur comportement asymptotique. Une derniere direction de recherche concerne les automates convergeant vers la mesure uniforme sur une large classe de mesures initiales (phenomene de randomisation).

[1]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[2]  Amir Pnueli,et al.  Reachability Analysis of Dynamical Systems Having Piecewise-Constant Derivatives , 1995, Theor. Comput. Sci..

[3]  Tom Meyerovitch,et al.  A Characterization of the Entropies of Multidimensional Shifts of Finite Type , 2007, math/0703206.

[4]  Nicolas Ollinger,et al.  A Particular Universal Cellular Automaton , 2008, CSP.

[5]  Pablo A. Ferrari,et al.  Invariant Measures and Convergence Properties for Cellular Automaton 184 and Related Processes , 2005 .

[6]  James P. Crutchfield,et al.  A Genetic Algorithm Discovers Particle-Based Computation in Cellular Automata , 1994, PPSN.

[7]  James P. Crutchfield,et al.  Computational mechanics of cellular automata: an example , 1997 .

[8]  N. Boccara,et al.  Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  Robert D. Fray Congruence properties of ordinary and $q$-binomial coefficients , 1967 .

[10]  Munemi Miyamoto An equilibrium state for a one-dimensional life game , 1979 .

[11]  Andrew Chi-Chih Yao,et al.  The complexity of nonuniform random number generation , 1976 .

[12]  Tom Meyerovitch Growth-type invariants for ℤd subshifts of finite type and arithmetical classes of real numbers , 2011 .

[13]  Paula Gonzaga Sá,et al.  The Gacs-Kurdyumov-Levin automaton revisited , 1992 .

[14]  Martin Delacourt,et al.  Construction of µ-limit Sets , 2010, JAC.

[15]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[16]  U. S. Army Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 2007 .

[17]  Marcus Pivato Algebraic invariants for crystallographic defects in cellular automata , 2006, Ergodic Theory and Dynamical Systems.

[18]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[19]  Guillaume Theyssier Captive Cellular Automata , 2004, MFCS.

[20]  P. Shields The Ergodic Theory of Discrete Sample Paths , 1996 .

[21]  Nazim Fatès,et al.  Stochastic Cellular Automata Solutions to the Density Classification Problem , 2012, Theory of Computing Systems.

[22]  Nathalie Aubrun,et al.  Simulation of Effective Subshifts by Two-dimensional Subshifts of Finite Type , 2013, ArXiv.

[23]  E. Nummelin,et al.  The kink of cellular automaton rule 18 performs a random walk , 1992 .

[24]  Alejandro Maass,et al.  On the sofic limit sets of cellular automata , 1995, Ergodic Theory and Dynamical Systems.

[25]  S. Redner A guide to first-passage processes , 2001 .

[26]  Guillaume Theyssier,et al.  Directional dynamics along arbitrary curves in cellular automata , 2011, Theor. Comput. Sci..

[27]  Alejandro Maass,et al.  Cesàro mean distribution of group automata starting from measures with summable decay , 2000, Ergodic Theory and Dynamical Systems.

[28]  Michael C. Loui,et al.  Randomizing Functions: Simulation of a Discrete Probability Distribution Using a Source of Unknown Distribution , 2006, IEEE Transactions on Information Theory.

[29]  Jacques Mazoyer On Optimal Solutions to the Firing Squad Synchronization Problem , 1996, Theor. Comput. Sci..

[30]  Lyman P. Hurd Formal Language Characterization of Cellular Automaton Limit Sets , 1987, Complex Syst..

[31]  S. Galatolo,et al.  Dynamics and abstract computability: Computing invariant measures , 2009, 0903.2385.

[32]  Ahmed Bouajjani,et al.  Perturbed Turing machines and hybrid systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[33]  E. Rio,et al.  Strong approximation of partial sums under dependence conditions with application to dynamical systems , 2011, 1103.3241.

[34]  S. Kleene Recursive predicates and quantifiers , 1943 .

[35]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[36]  Ryuhei Uehara Efficient Simulations by a Biased Coin , 1995, Inf. Process. Lett..

[37]  Masakazu Nasu,et al.  Permutation Cellular Automata , 2013 .

[38]  Daniel J. Rudolph,et al.  ×2 and ×3 invariant measures and entropy , 1990, Ergodic Theory and Dynamical Systems.

[39]  Kari Eloranta,et al.  The dynamics of defect ensembles in one-dimensional cellular automata , 1994 .

[40]  Mathieu Sablik,et al.  Measure rigidity for algebraic bipermutative cellular automata , 2005, Ergodic Theory and Dynamical Systems.

[41]  Marcus Pivato Invariant measures for bipermutative cellular automata , 2003 .

[42]  Peter Grassberger,et al.  Chaos and diffusion in deterministic cellular automata , 1984 .

[43]  Jean-Charles Delvenne,et al.  Decidability and Universality in Symbolic Dynamical Systems , 2004, Fundam. Informaticae.

[44]  James P. Crutchfield,et al.  Mechanisms of Emergent Computation in Cellular Automata , 1998, PPSN.

[45]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[46]  Petr Kurka Cellular automata with vanishing particles , 2003, Fundam. Informaticae.

[47]  Guillaume Theyssier,et al.  μ-Limit sets of cellular automata from a computational complexity perspective , 2015, J. Comput. Syst. Sci..

[48]  J. Mairesse,et al.  Density classification on infinite lattices and trees , 2013 .

[49]  Marcus Pivato Defect particle kinematics in one-dimensional cellular automata , 2007, Theor. Comput. Sci..

[50]  M. Boyle,et al.  HIDDEN MARKOV PROCESSES IN THE CONTEXT OF SYMBOLIC DYNAMICS , 2009, 0907.1858.

[51]  Klaus Weihrauch,et al.  The Arithmetical Hierarchy of Real Numbers , 1999, MFCS.

[52]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[53]  M. Hochman On the dynamics and recursive properties of multidimensional symbolic systems , 2009 .

[54]  Petr Kurka,et al.  Asymptotic distribution of entry times in a cellular automaton with annihilating particles , 2011, Automata.

[55]  Sébastien Ferenczi,et al.  Combinatorics, Automata and Number Theory: Infinite words with uniform frequencies, and invariant measures , 2010 .

[56]  Claude E. Shannon,et al.  Computability by Probabilistic Machines , 1970 .

[57]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[58]  Guillaume Theyssier,et al.  On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures , 2006, MFCS.

[59]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[60]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[61]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[62]  Yuval Ishai,et al.  On the randomness complexity of efficient sampling , 2006, STOC '06.

[63]  Marcus Pivato,et al.  Limit measures for affine cellular automata II , 2001, Ergodic Theory and Dynamical Systems.

[64]  Robert Fisch,et al.  Cyclic cellular automata and related processes , 1990 .

[65]  Benjamin Hellouin de Menibus,et al.  Self-organization in Cellular Automata: A Particle-Based Approach , 2011, Developments in Language Theory.

[66]  Marcus Pivato,et al.  Limit measures for affine cellular automata , 2001, Ergodic Theory and Dynamical Systems.

[67]  Alejandro Maass,et al.  Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules , 2003 .

[68]  I RobertFiseh The One-Dimensional Cyclic Cellular Automaton: A System with Deterministic Dynamics That Emulates an Interacting Particle System with Stochastic Dynamics , 1990 .

[69]  Pascal Vanier,et al.  Turing Degrees of Limit Sets of Cellular Automata , 2014, ICALP.

[70]  I. Shevtsova On the absolute constants in the Berry-Esseen-type inequalities , 2011, 1111.6554.

[71]  Peter GBcsl Reliable Cellular Automata with Self-organization , 1997 .

[72]  Michel Cosnard,et al.  Computability with Low-Dimensional Dynamical Systems , 1994, Theor. Comput. Sci..

[73]  P. Grassberger New mechanism for deterministic diffusion , 1983 .

[74]  Mike Hurley Ergodic aspects of cellular automata , 1990 .

[75]  Martin Ziegler Computability and Continuity on the Real Arithmetic Hierarchy and the Power of Type-2 Nondeterminism , 2005, CiE.

[76]  Benjamin Hellouin de Menibus,et al.  CHARACTERIZATION OF SETS OF LIMIT MEASURES AFTER ITERATION OF A CELLULAR AUTOMATON ON AN INITIAL MEASURE BENJAMIN HELLOUIN DE MENIBUS AND MATHIEU SABLIK , 2013 .

[77]  Benjamin Hellouin de Menibus,et al.  Entry times in automata with simple defect dynamics , 2012, AUTOMATA & JAC.

[78]  Martin Delacourt Rice's Theorem for μ-Limit Sets of Cellular Automata , 2011, ICALP.

[79]  Marcus Pivato Spectral Domain Boundaries in Cellular Automata , 2007, Fundam. Informaticae.

[80]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[81]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[82]  Pietro Di Lena,et al.  Undecidable Properties of Limit Set Dynamics of Cellular Automata , 2009, STACS.

[83]  Alejandro Maass,et al.  Limit Sets of Cellular Automata Associated to Probability Measures , 2000 .

[84]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[85]  Alejandro Maass,et al.  On Cesàro Limit Distribution of a Class of Permutative Cellular Automata , 1998 .

[86]  Zhengyan Lin,et al.  Limit Theory for Mixing Dependent Random Variables , 1997 .

[87]  Pablo A. Ferrari,et al.  Ballistic annihilation and deterministic surface growth , 1995 .