Proteomics & metabolomics: Mapping biochemical regulations

[1]  R. Dabur,et al.  A rapid and simple approach to discriminate various extracts of Saraca asoca (Roxb.), De. Wild using UPLC-QTOFMS and multivariate analysis , 2013 .

[2]  Ralf Tautenhahn,et al.  A view from above: cloud plots to visualize global metabolomic data. , 2013, Analytical chemistry.

[3]  G. Siuzdak,et al.  XCMS Online: a web-based platform to process untargeted metabolomic data. , 2012, Analytical chemistry.

[4]  G. Vaidyanathan Redefining Clinical Trials: The Age of Personalized Medicine , 2012, Cell.

[5]  Arjen Lommen,et al.  MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. , 2009, Analytical chemistry.

[6]  Leo L. Cheng,et al.  Metabolomic Characterization of Human Rectal Adenocarcinoma with Intact Tissue Magnetic Resonance Spectroscopy , 2009, Diseases of the colon and rectum.

[7]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[8]  G. Siuzdak,et al.  Nanostructure-initiator mass spectrometry: a protocol for preparing and applying NIMS surfaces for high-sensitivity mass analysis , 2008, Nature Protocols.

[9]  Julian L Griffin,et al.  Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding? , 2008, Physiological genomics.

[10]  M. Baker,et al.  Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing. , 2008, Journal of proteome research.

[11]  Junefredo V. Apon,et al.  Clathrate nanostructures for mass spectrometry , 2007, Nature.

[12]  T. Ebbels,et al.  Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts , 2007, Nature Protocols.

[13]  I. Wilson,et al.  Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. , 2007, Journal of proteome research.

[14]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[15]  Masaru Tomita,et al.  MathDAMP: a package for differential analysis of metabolite profiles , 2006, BMC Bioinformatics.

[16]  T. Griffin,et al.  Gel‐free mass spectrometry‐based high throughput proteomics: Tools for studying biological response of proteins and proteomes , 2006, Proteomics.

[17]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[18]  Matej Oresic,et al.  MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data , 2006, Bioinform..

[19]  Barbara M. Bakker,et al.  Unraveling the complexity of flux regulation: A new method demonstrated for nutrient starvation in Saccharomyces cerevisiae , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[21]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[22]  M. Lerner,et al.  [1,2-13C2]-D-Glucose Profiles of the Serum, Liver, Pancreas, and DMBA-Induced Pancreatic Tumors of Rats , 2005, Pancreas.

[23]  M. Walsh,et al.  METABOLOMICS IN HUMAN NUTRITION: OPPORTUNITIES AND CHALLENGES , 2005 .

[24]  Jan van der Greef,et al.  Symbiosis of chemometrics and metabolomics: past, present, and future , 2005 .

[25]  A. Heck,et al.  Double Standards in Quantitative Proteomics , 2005, Molecular & Cellular Proteomics.

[26]  D. Schomburg,et al.  GC–MS libraries for the rapid identification of metabolites in complex biological samples , 2005, FEBS letters.

[27]  Kazuki Saito,et al.  Potential of metabolomics as a functional genomics tool. , 2004, Trends in plant science.

[28]  Julian L. Griffin,et al.  Metabolic profiles of cancer cells , 2004, Nature Reviews Cancer.

[29]  J. Yates Mass spectral analysis in proteomics. , 2004, Annual review of biophysics and biomolecular structure.

[30]  B. Cargile,et al.  Immobilized pH gradients as a first dimension in shotgun proteomics and analysis of the accuracy of pI predictability of peptides , 2004, Electrophoresis.

[31]  Julian L Griffin,et al.  Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. , 2003, Current opinion in chemical biology.

[32]  M. Tomita,et al.  Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. , 2003, Journal of proteome research.

[33]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[34]  R. Aebersold,et al.  Proteomics: the first decade and beyond , 2003, Nature Genetics.

[35]  John R Yates,et al.  Analysis of quantitative proteomic data generated via multidimensional protein identification technology. , 2002, Analytical chemistry.

[36]  J. Yates,et al.  An automated multidimensional protein identification technology for shotgun proteomics. , 2001, Analytical chemistry.

[37]  Edward M. Marcotte,et al.  The path not taken , 2001, Nature Biotechnology.

[38]  J. Ryals,et al.  A systematic approach to biochemical profiling. , 2001, Current opinion in plant biology.

[39]  S. Patterson,et al.  Automated LC-LC-MS-MS platform using binary ion-exchange and gradient reversed-phase chromatography for improved proteomic analyses. , 2001, Journal of chromatography. B, Biomedical sciences and applications.

[40]  H. Noteborn,et al.  Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops. , 2000, Journal of biotechnology.

[41]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[42]  F Baganz,et al.  Systematic functional analysis of the yeast genome. , 1998, Trends in biotechnology.

[43]  D. Kell,et al.  Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel. , 1996, Biochimica et biophysica acta.

[44]  H V Westerhoff,et al.  Channelling can decrease pool size. , 1992, European journal of biochemistry.

[45]  R. Dabur,et al.  RAPD PATTERNS OF SOME IMPORTANT MEDICINAL PLANTS AND THEIR SUBSTITUTES USED IN AYURVEDA TO IDENTIFY THE GENETIC VARIATIONS , 2013 .

[46]  R. Dabur,et al.  PRINCIPAL COMPONENT AND PARTIAL LEAST SQUARE DISCRIMINANT BASED ANALYSIS OF METHANOL EXTRACTS OF BARK AND RE-GENERATED BARK OF SARACA ASOCA , 2012 .

[47]  B. Daviss Growing pains for metabolomics , 2005 .

[48]  Laura Lane,et al.  The NINE LIVES of lab equipment , 2005 .

[49]  B. Cargile,et al.  Gel based isoelectric focusing of peptides and the utility of isoelectric point in protein identification. , 2004, Journal of proteome research.

[50]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[51]  R. Goodacre,et al.  Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis , 2003, Springer US.

[52]  D. Hochstrasser,et al.  From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Arnino Acid Analysis , 1996, Bio/Technology.

[53]  M. Wilkins,et al.  Progress with gene‐product mapping of the Mollicutes: Mycoplasma genitalium , 1995, Electrophoresis.