Learning in a Fuzzy Random Forest ensemble from imperfect data
暂无分享,去创建一个
M. Carmen Garrido | José Manuel Cadenas | Raquel Martínez | M. C. Garrido | J. M. Cadenas | Raquel Martínez
[1] Aiko M. Hormann,et al. Programs for Machine Learning. Part I , 1962, Inf. Control..
[2] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[3] W. Marsden. I and J , 2012 .
[4] L. Goddard. Information Theory , 1962, Nature.
[5] M. C. Garrido,et al. Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians , 1998, J. Artif. Intell. Res..
[6] Piero P. Bonissone,et al. Approximate Reasoning Systems: Handling Uncertainty and Imprecision in Information Systems , 1996, Uncertainty Management in Information Systems.
[7] A. Otero,et al. Longest path estimation from inherently fuzzy data acquired with GPS using genetic algorithms , 2006, 2006 International Symposium on Evolving Fuzzy Systems.
[8] Cezary Z. Janikow,et al. Fuzzy decision trees: issues and methods , 1998, IEEE Trans. Syst. Man Cybern. Part B.
[9] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[10] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[11] Inés Couso,et al. Extending a simple genetic cooperative-competitive learning fuzzy classifier to low quality datasets , 2009, Evol. Intell..
[12] Piero P. Bonissone,et al. A fuzzy random forest , 2010, Int. J. Approx. Reason..
[13] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[14] Piero P. Bonissone,et al. A classification and regression technique to handle heterogeneous and imperfect information , 2010, Soft Comput..
[15] Francisco Herrera,et al. A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability , 2009, Soft Comput..