On the solvability of singular boundary value problems on the real line in the critical growth case

Combining fixed point techniques with the method of lower-upper solutions we prove the existence of at least one weak solution for the following boundary value problem \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} \left( \, \Phi(a(t, x(t)) \, x'(t) )\, \right)' = f(t, x(t), x'(t)) &\mbox{ in } \mathbb{R}\\ x(-\infty) = \nu_{1}, \quad x(+\infty) = \nu_{2} \end{array} \right. \end{equation*} $\end{document} where \begin{document}$ \nu_{1}, \nu_{2}\in \mathbb{R} $\end{document} , \begin{document}$ \Phi: \mathbb{R} \rightarrow \mathbb{R} $\end{document} is a strictly increasing homeomorphism extending the classical \begin{document}$ p $\end{document} -Laplacian, \begin{document}$ a $\end{document} is a nonnegative continuous function on \begin{document}$ \mathbb{R} \times \mathbb{R} $\end{document} which can vanish on a set having zero Lebesgue measure and \begin{document}$ f $\end{document} is a Caratheodory function on \begin{document}$ \mathbb{R} \times \mathbb{R}^{2} $\end{document} .

[1]  A. Calamai,et al.  Existence results for boundary value problems associated with singular strongly nonlinear equations , 2019, Journal of Fixed Point Theory and Applications.

[2]  Stefano Biagi On the existence of weak solutions for singular strongly nonlinear boundary value problems on the half-line , 2019, Annali di Matematica Pura ed Applicata (1923 -).

[3]  A. Calamai,et al.  Heteroclinic solutions for a class of boundary value problems associated with singular equations , 2019, Nonlinear Analysis.

[4]  A. Calamai,et al.  Boundary value problems for singular second order equations , 2018, Fixed Point Theory and Applications.

[5]  C. Marcelli The role of boundary data on the solvability of some equations involving non-autonomous nonlinear differential operators , 2013 .

[6]  M. Frigon,et al.  Multiple solutions of boundary value problems with ϕ-Laplacian operators and under a Wintner-Nagumo growth condition , 2013 .

[7]  Alberto Cabada,et al.  An Overview of the Lower and Upper Solutions Method with Nonlinear Boundary Value Conditions , 2011 .

[8]  G. Cupini,et al.  On the solvability of a boundary value problem on the real line , 2011 .

[9]  G. Cupini,et al.  Heteroclinic solutions of boundary-value problems on the real line involving general nonlinear differential operators , 2011, Differential and Integral Equations.

[10]  A. Calamai Heteroclinic solutions of boundary value problems on the real line involving singular Φ-Laplacian operators , 2011 .

[11]  D. O’Regan,et al.  Second order problems with functional conditions including Sturm–Liouville and multipoint conditions , 2008 .

[12]  F. Papalini,et al.  Non-autonomous boundary value problems on the real line , 2006 .

[13]  J. Mawhin,et al.  Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian , 2007 .

[14]  A. Cabada,et al.  Existence results for the problem ( φ( u′))′= f( t, u, u′) with nonlinear boundary conditions 1 1 Research partially supported by DGICYT, project PB94-0610. , 1999 .