Experimental verification of n = 0 structures for visible light.

We fabricate and characterize a metal-dielectric nanostructure with an effective refractive index n = 0 in the visible spectral range. Light is excited in the material at deep subwavelength resolution by a 30-keV electron beam. From the measured spatially and angle-resolved emission patterns, a vanishing phase advance, corresponding to an effective [Symbol: see text] = 0 and n = 0, is directly observed at the cutoff frequency. The wavelength at which this condition is observed can be tuned over the entire visible or near-infrared spectral range by varying the waveguide width. This n = 0 plasmonic nanostructure may serve as a new building block in nanoscale optical integrated circuits and to control spontaneous emission as experimentally demonstrated by the strongly enhanced radiative optical density of states over the entire n = 0 structure.

[1]  S. Ornes Metamaterials , 2013, Proceedings of the National Academy of Sciences.

[2]  A. Polman,et al.  Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. , 2007, Nano letters.

[3]  David R. Smith,et al.  The quest for the superlens. , 2006, Scientific American.

[4]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[5]  Albert Polman,et al.  Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal nanoparticle waveguides , 2007 .

[6]  A. Alu,et al.  Coaxial-to-Waveguide Matching With $\varepsilon$-Near-Zero Ultranarrow Channels and Bends , 2010, IEEE Transactions on Antennas and Propagation.

[7]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[8]  F. G. D. Abajo,et al.  Photon emission from silver particles induced by a high-energy electron beam , 2001 .

[9]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[10]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  The Measured Electric Field Spatial Distribution Within A Metamaterial Subwavelength Cavity Resonator , 2007, IEEE Transactions on Antennas and Propagation.

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[14]  A. Polman,et al.  Angle-resolved cathodoluminescence spectroscopy , 2011, 1107.3632.

[15]  Richard W Ziolkowski,et al.  Propagation in and scattering from a matched metamaterial having a zero index of refraction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[17]  L. Novotný,et al.  Antennas for light , 2011 .

[18]  Nader Engheta,et al.  Taming light at the nanoscale , 2010 .

[19]  Harry A. Atwater,et al.  Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence , 2009 .

[20]  Andrea Alù,et al.  Boosting molecular fluorescence with a plasmonic nanolauncher. , 2009, Physical review letters.

[21]  N. Engheta,et al.  Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects , 2008, 0802.3540.

[22]  A. Polman,et al.  Ultrasmall mode volume plasmonic nanodisk resonators. , 2010, Nano letters (Print).

[23]  Andrea Alù,et al.  All optical metamaterial circuit board at the nanoscale. , 2009, Physical review letters.

[24]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[25]  Nader Engheta,et al.  Experimental Verification of n 1⁄4 0 Structures for Visible Light , 2012 .

[26]  Nader Engheta,et al.  Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. , 2006, Physical review letters.

[27]  G. Tayeb,et al.  A metamaterial for directive emission. , 2002, Physical review letters.

[28]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[29]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[30]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[31]  Nader Engheta,et al.  Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials , 2007 .

[32]  Nader Engheta,et al.  Light squeezing through arbitrarily shaped plasmonic channels and sharp bends , 2008 .

[33]  Andrea Alù,et al.  Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. , 2008, Physical review letters.

[34]  David M. Slocum,et al.  Funneling light through a subwavelength aperture using epsilon-near-zero materials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[35]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[36]  H. Lezec,et al.  Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling , 2008, 0801.1267.

[37]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[38]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[39]  Polman,et al.  Measuring and modifying the spontaneous emission rate of erbium near an interface. , 1995, Physical review letters.

[40]  A. Polman,et al.  Efficient generation of propagating plasmons by electron beams. , 2009, Nano letters.

[41]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[42]  Qiang Cheng,et al.  Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. , 2008, Physical review letters.

[43]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[44]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[45]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[46]  Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas. , 2012, ACS nano.

[47]  Vladimir M. Shalaev,et al.  Optical Metamaterials: Fundamentals and Applications , 2009 .

[48]  R. Piestun,et al.  Total external reflection from metamaterials with ultralow refractive index , 2003 .

[49]  Do-Hoon Kwon,et al.  Low-index metamaterial designs in the visible spectrum. , 2007, Optics express.

[50]  Nonlinear Control of Tunneling Through an Epsilon-Near-Zero Channel , 2009, 0901.4601.

[51]  H. Atwater,et al.  A single-layer wide-angle negative-index metamaterial at visible frequencies. , 2010, Nature materials.