Fully depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

Charge-coupled devices (CCDs) have been fabricated on high-resistivity, n-type silicon. The resistivity, on the order of 10 000 /spl Omega//spl middot/cm, allows for depletion depths of several hundred micrometers. Fully depleted, back-illuminated operation is achieved by the application of a bias voltage to an ohmic contact on the wafer back side consisting of a thin in situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for a good short-wavelength response, while the relatively large depleted thickness results in a good near-infrared response.

[1]  D.F. Barbe,et al.  Imaging devices using the charge-coupled concept , 1975, Proceedings of the IEEE.

[2]  Jacques I. Pankove,et al.  Optical Processes in Semiconductors , 1971 .

[3]  S. Perlmutter,et al.  A 200/spl times/200 CCD image sensor fabricated on high-resistivity silicon , 1996, International Electron Devices Meeting. Technical Digest.

[4]  K. Rajkanan,et al.  Absorption coefficient of silicon for solar cell calculations , 1979 .

[5]  Rolf W. Martin,et al.  OPTICAL PROPERTIES OF SEMICONDUCTORS , 2000 .

[6]  Barry E. Burke,et al.  An abuttable CCD imager for visible and X-ray focal plane arrays , 1991 .

[7]  Peter J. Pool,et al.  New generation of scientific CCD sensors , 1997, Electronic Imaging.

[8]  Morley M. Blouke,et al.  Simplified model of the back surface of a charge-coupled device , 1991, Medical Imaging.

[9]  Morley M. Blouke,et al.  Charge-Coupled Device Pinning Technologies , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[10]  N. Saks,et al.  A technique for suppressing dark current generated by interface states in buried channel CCD imagers , 1980, IEEE Electron Device Letters.

[11]  James R. Janesick,et al.  Notch and large-area CCD imagers , 1991, Medical Imaging.

[12]  S. P. Emmons,et al.  Noise in buried channel charge-coupled devices , 1976, IEEE Transactions on Electron Devices.

[13]  Robert Laine,et al.  X-ray Multimirror Mission: an overview , 1996, Optics & Photonics.

[14]  Jack D. Gaskill,et al.  Linear systems, fourier transforms, and optics , 1978, Wiley series in pure and applied optics.

[15]  B. Burke,et al.  Dynamic suppression of interface-state dark current in buried-channel CCDs , 1991 .

[16]  Dave Campbell,et al.  CCD Advances For X-Ray Scientific Measurements In 1985 , 1986, Other Conferences.

[17]  M. Uslenghi,et al.  Proton radiation damage in p-channel CCDs fabricated on high- resistivity silicon , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[18]  K. Yamaguchi,et al.  Theoretical study of a channel-doped separate gate Si MOSFET (SG-MOSFET) by two-dimensional computer simulation , 1981, IEEE Transactions on Electron Devices.

[19]  J. Janesick,et al.  Scientific Charge-Coupled Devices , 2001 .

[20]  H. Bender,et al.  Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers , 2001 .

[21]  Barry E. Burke,et al.  CCD soft X-ray imaging spectrometer for the ASCA satellite , 1994 .

[22]  M. H. Crowell,et al.  The effect of a resistive sea on the performance of a silicon diode array camera tube , 1968 .

[23]  Tom Elliott,et al.  Backside Charging Of The CCD , 1985, Optics & Photonics.

[24]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[25]  H. Ehrenreich,et al.  Optical Properties of Semiconductors , 1963 .

[26]  J. Wallmark,et al.  Properties of Semiconductors , 1974 .

[27]  E. D. Wolley,et al.  High-voltage planar p-n junctions , 1967 .

[28]  D. M. McCann,et al.  Area Array X-Ray Sensors , 1980, Photonics West - Lasers and Applications in Science and Engineering.

[29]  G. Bertuccio,et al.  Implanted silicon JFET on completely depleted high-resistivity devices , 1989, IEEE Electron Device Letters.

[30]  Thomas Kailath,et al.  Linear Systems , 1980 .

[31]  M. Le Helley,et al.  Analytical expression for the potential of guard rings of diodes operating in the punchthrough mode , 1985, IEEE Transactions on Electron Devices.

[32]  Morley M. Blouke,et al.  Ultraviolet Quantum Efficiency And Vacuum Stability Of Ion-Implanted, Laser Annealed CCDS , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[33]  M. H. Crowell,et al.  The silicon diode array camera tube , 1969 .

[34]  W. W. Moses,et al.  Development of low noise, back-side illuminated silicon photodiode arrays , 1997 .

[35]  I. Debusschere,et al.  Fully integrated CMOS pixel detector for high energy particles , 1989 .

[36]  Wilfried von Ammon,et al.  The production and availability of high resistivity silicon for detector application , 1984 .

[37]  David K. Gilmore,et al.  Radiation events in astronomical CCD images , 2002, IS&T/SPIE Electronic Imaging.

[38]  J. Hynecek,et al.  Virtual phase technology: A new approach to fabrication of large-area CCD's , 1981, IEEE Transactions on Electron Devices.

[39]  D. H. Seib,et al.  Carrier diffusion degradation of modulation transfer function in charge coupled imagers , 1974 .

[40]  A. Papoulis Linear systems, Fourier transforms, and optics , 1981, Proceedings of the IEEE.

[41]  Saul Perlmutter,et al.  Characterization of a fully depleted CCD on high-resistivity silicon , 1997, Electronic Imaging.

[42]  Gordon R. Hopkinson,et al.  Analytic Modeling Of Charge Diffusion In Charge-Coupled-Device Imagers , 1987 .

[43]  Michael Levi,et al.  Point-spread function in depleted and partially depleted CCDs , 1999 .

[44]  P. Richman,et al.  Modulation of space-charge-limited current flow in insulated-gate field-effect tetrodes , 1969 .

[45]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[46]  D. McCarthy,et al.  Deep-depletion CCDs with improved UV sensitivity , 1985, 1985 International Electron Devices Meeting.

[47]  Carlo H. Séquin,et al.  Charge-coupled area image sensor using three levels of polysilicon , 1974 .

[48]  Michael E. Levi,et al.  Quantum efficiency of a back-illuminated CCD imager: an optical approach , 1999, Electronic Imaging.

[49]  一岡 芳樹,et al.  J. D. Gaskill: Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons, New York, 1978, xiv+554ページ, 23.5×15.5cm, $24.96 (Wiley Sons in Pure and Applied Optics). , 1979 .

[50]  K. Yamaguchi,et al.  Submicron gate MOSFET's with channel-doped separate gate structures (SG-MOSFET's) , 1981, IEEE Transactions on Electron Devices.

[51]  S. Holland,et al.  A monolithically integrated detector-preamplifier on high-resistivity silicon , 1990 .

[52]  Gregory Y. Prigozhin,et al.  Soft-X-ray CCD imagers for AXAF , 1997 .

[53]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[54]  G. R. Hopkinson,et al.  Proton damage effects on p-channel CCDs , 1999 .

[55]  S. E. Holland,et al.  Fabrication of detectors and transistors on high-resistivity silicon , 1988 .

[56]  Martin C. Peckerar,et al.  X‐ray imaging with a charge‐coupled device fabricated on a high‐resistivity silicon substrate , 1981 .

[57]  M.S. Adler,et al.  Theory and breakdown voltage for planar devices with a single field limiting ring , 1977, IEEE Transactions on Electron Devices.

[58]  J. Goodman Introduction to Fourier optics , 1969 .

[59]  Barry E. Burke,et al.  An abuttable CCD imager for visible and X-ray focal plane arrays , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.

[60]  J.P. Spratt,et al.  The effects of nuclear radiation on P-channel CCD imagers , 1997, 1997 IEEE Radiation Effects Data Workshop NSREC Snowmass 1997. Workshop Record Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference.