Ni-doping effect on spark-plasma sintering of tungsten compacts: synergy of grain boundary strengthening and secondary phase formation for mechanical behavior improvement

[1]  M. Balooch,et al.  Enhancing Mechanical Properties of Ultrafine-Grained Tungsten for Fusion Applications , 2023, SSRN Electronic Journal.

[2]  Shuai Chen,et al.  Activated sintering effect of Fe element on tungsten via spark plasma sintering , 2022, Nuclear Materials and Energy.

[3]  C. Grisolia,et al.  SHS Synthesis, SPS Densification and Mechanical Properties of Nanometric Tungsten , 2021, Metals.

[4]  J. van Dommelen,et al.  Brittle-ductile transition temperature of recrystallized tungsten following exposure to fusion relevant cyclic high heat load , 2020 .

[5]  Z. Fang,et al.  The effect of Ni doping on the mechanical behavior of tungsten , 2020 .

[6]  J. V. Dommelen,et al.  Numerical investigation of the brittle-to-ductile transition temperature of rolled high-purity tungsten , 2020, Mechanics of Materials.

[7]  P. Hu,et al.  New insights into the accelerated sintering of tungsten with trace nickel addition , 2020 .

[8]  Hui-bin Wu,et al.  Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains , 2019, Materials Science and Engineering: A.

[9]  S. Lynch A review of underlying reasons for intergranular cracking for a variety of failure modes and materials and examples of case histories , 2019, Engineering Failure Analysis.

[10]  C. Motz,et al.  Elastic fields due to dislocations in anisotropic bi- and tri-materials: Applications to discrete dislocation pile-ups at grain boundaries , 2019, International Journal of Solids and Structures.

[11]  B. Xiao,et al.  Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites , 2019, Materials & Design.

[12]  B. Gault,et al.  Conventional vs harmonic-structured β-Ti-25Nb-25Zr alloys: A comparative study of deformation mechanisms , 2018, Acta Materialia.

[13]  J. Ligda,et al.  Mechanisms of deformation and ductility in tungsten – A review , 2018, International Journal of Refractory Metals and Hard Materials.

[14]  Brady G. Butler,et al.  Methods for improving ductility of tungsten - A review , 2018, International Journal of Refractory Metals and Hard Materials.

[15]  C. Grisolia,et al.  SHS Synthesis and SPS Densification of Nanometric Tungsten , 2018 .

[16]  Yang Cao,et al.  Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure , 2018, Journal of Materials Science.

[17]  Jpm Johan Hoefnagels,et al.  Ferrite slip system activation investigated by uniaxial micro-tensile tests and simulations , 2018 .

[18]  Hyung Keun Park,et al.  Additional hardening in harmonic structured materials by strain partitioning and back stress , 2018 .

[19]  T. Yuan,et al.  Spark plasma sintering of pure tungsten powder: Densification kinetics and grain growth , 2017 .

[20]  E. Olevsky,et al.  Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering , 2016 .

[21]  P. Puschnig,et al.  Ab initio search for cohesion-enhancing impurity elements at grain boundaries in molybdenum and tungsten , 2016 .

[22]  D. Field,et al.  Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel , 2016 .

[23]  F. Yuan,et al.  Strain hardening in Fe-16Mn-10Al-0.86C-5Ni high specific strength steel , 2016 .

[24]  A. Ukhina,et al.  Reactivity of materials towards carbon of graphite foil during Spark Plasma Sintering: A case study using Ni–W powders , 2016 .

[25]  V. Tomar,et al.  An analysis of the influence of grain boundary strength on microstructure dependent fracture in polycrystalline tungsten , 2016, International Journal of Fracture.

[26]  F. Yuan,et al.  Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility , 2015, Proceedings of the National Academy of Sciences.

[27]  Hao Zhou,et al.  Influence of Gradient Structure Volume Fraction on the Mechanical Properties of Pure Copper , 2015, Heterostructured Materials.

[28]  K. Hartwig,et al.  Hardness and microstructure of tungsten heavy alloy subjected to severe plastic deformation and post-processing heat treatment , 2015 .

[29]  C. S. Liu,et al.  Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening , 2014 .

[30]  P. Ren,et al.  Densification behavior, mechanical properties and thermal shock resistance of tungsten alloys fabricated at low temperature , 2014 .

[31]  Fuping Yuan,et al.  Extraordinary strain hardening by gradient structure , 2014, Proceedings of the National Academy of Sciences.

[32]  D. Rupp,et al.  Fracture behaviour of polycrystalline tungsten , 2014 .

[33]  Blythe G. Clark,et al.  An experimental statistical analysis of stress projection factors in BCC tantalum , 2013 .

[34]  Junzhan Zhang,et al.  Suppressing pore-boundary separation during spark plasma sintering of tungsten , 2013 .

[35]  C. S. Liu,et al.  Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten , 2012 .

[36]  R. Raffray,et al.  Making tungsten work – ICFRM-14 session T26 paper 501 Nygren et al. making tungsten work , 2011 .

[37]  Min Song,et al.  Microstructure and highly enhanced mechanical properties of fine-grained tungsten heavy alloy after one-pass rapid hot extrusion , 2011 .

[38]  B. Gludovatz,et al.  Influence of impurities on the fracture behaviour of tungsten , 2011 .

[39]  E. Arzt,et al.  Correlation between critical temperature and strength of small-scale bcc pillars. , 2009, Physical review letters.

[40]  M. A. Monge,et al.  Mechanical Behavior of W-Y2O3 and W-Ti Alloys from 25 °C to 1000 °C , 2009 .

[41]  Y. Boonyongmaneerat Effects of low-content activators on low-temperature sintering of tungsten , 2009 .

[42]  J. Wang,et al.  Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity , 2009 .

[43]  L. Kecskes,et al.  Microstructures and recrystallization behavior of severely hot-deformed tungsten , 2009 .

[44]  Q. Wei,et al.  Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten , 2008 .

[45]  S. Lynch Progression markings, striations, and crack-arrest markings on fracture surfaces , 2007 .

[46]  R. Pippan,et al.  Fracture toughness investigations of tungsten alloys and SPD tungsten alloys , 2007 .

[47]  H. Meyer,et al.  Thin intergranular films and solid-state activated sintering in nickel-doped tungsten , 2007 .

[48]  Lu Wang,et al.  Deformation characteristics of the 93W–4.9Ni–2.1Fe tungsten heavy alloy deformed by hydrostatic extrusion , 2006 .

[49]  K. T. Ramesh,et al.  Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion , 2006 .

[50]  S. Groves,et al.  Effect of matrix alloy and cold swaging on micro-tensile properties of tungsten heavy alloys , 2006 .

[51]  Jian Luo,et al.  Segregation-induced grain boundary premelting in nickel-doped tungsten , 2005 .

[52]  K. T. Ramesh,et al.  Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression , 2005 .

[53]  D. Rittel,et al.  On the isotropy of the dynamic mechanical and failure properties of swaged tungsten heavy alloys , 2004 .

[54]  A. Seeger Why anomalous slip in body-centred cubic metals? , 2001 .

[55]  Wang Fu-chi,et al.  Research on the deformation strengthening mechanism of a tungsten heavy alloy by hydrostatic extrusion , 2001 .

[56]  Doh-Yeon Kim,et al.  Activated sintering of nickel-doped tungsten: Approach by grain boundary structural transition , 2000 .

[57]  R. Becker Pencil glide formulation for polycrystal modelling , 1995 .

[58]  G. Krasko Site competition effect of impurities and grain boundary stability in iron and tungsten , 1993 .

[59]  J. Jonas,et al.  Theoretical analyses of 〈111〉 pencil glide in b.c.c. crystals , 1988 .

[60]  A. Kobylanski,et al.  The influence of carbon and oxygen in the grain boundary on the brittle-ductile transition temperature of tungsten bi-crystals , 1984 .

[61]  John M. Liu,et al.  Grain boundary fracture in tungsten bi-crystals , 1982 .

[62]  H. Matsui,et al.  Anomalous slip induced by the surface effect in molybdenum single-crystal foils deformed in a high voltage electron microscope , 1982 .

[63]  W. R. Witzke The effects of composition on mechanical properties of W-4Re-Hf-C alloys , 1974, Metallurgical and Materials Transactions B.

[64]  W. Spitzig,et al.  Orientation dependence of the strain-rate sensitivity and thermally activated flow in iron single crystals , 1970 .

[65]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[66]  J. R. Stephens Effect of Oxygen on Mechanical Properties of Tungsten , 1963 .

[67]  G. Taylor,et al.  The Distortion of Iron Crystals , 1926 .

[68]  G. Dirras,et al.  Nickel-Tungsten Composite-Like Microstructures Processed by Spark Plasma Sintering for Structural Applications , 2019, Spark Plasma Sintering of Materials.

[69]  M. Rieth,et al.  Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling , 2016 .

[70]  W. Schubert,et al.  Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds , 1999 .

[71]  C. Herzig,et al.  GRAIN BOUNDARY SELF AND IMPURITY DIFFUSION IN TUNGSTEN IN THE TEMPERATURE RANGE OF ACTIVATED SINTERING , 1990 .