Supramolecular ‘catch-and-release’ strategy for bioorthogonal fluorogenic imaging across the visible spectrum

Fluorogenic probes that unmask fluorescence signals in response to a bioorthogonal reaction are a powerful new addition to biological imaging. They can provide significantly reduced background fluorescence and minimize non-specific signals, potentially allowing real-time high-contrast imaging without washing out excess fluorophores. While diverse classes of highly refined synthetic fluorophores are readily available now, their integration into a bioorthogonal fluorogenic scheme still necessitates another level of extensive design efforts and customized structural alterations to optimize quenching mechanisms for each given fluorophore scaffold. Herein, we present an easy-to-implement and highly generalizable supramolecular ‘catch-and-release’ strategy for generating an efficient bioorthogonal fluorogenic response from essentially any readily available fluorophores without further structural alterations. We designed this distinct strategy based on the macrocyclic cucurbit[7]uril (CB7) host, where a fluorogenic response is achieved by programming a guest displacement reaction from the macrocycle cavity. We used this strategy to rapidly generate fluorogenic probes across the visible spectrum from structurally diverse classes of fluorophore scaffolds, including coumarin, bodipy, rhodamine, and cyanine. These probes were applied to no-wash fluorogenic imaging of various target molecules in live cells and tissue with minimal background and no appreciable non-specific signal. Notably, the orthogonal reactivity profile of the system allowed us to pair this host-guest fluorogenic probe with the covalently clickable fluorogenic probe to achieve high-contrast super-resolution and multiplexed fluorogenic imaging in cells and tissue.

[1]  H. Mattoussi,et al.  Evaluating the Catalytic Efficiency of the Human Membrane-type 1 Matrix Metalloproteinase (MMP-14) Using AuNP-Peptide Conjugates. , 2023, Journal of the American Chemical Society.

[2]  L. Albertazzi,et al.  Can super-resolution microscopy become a standard characterization technique for materials chemistry? , 2021, Chemical science.

[3]  Á. Szatmári,et al.  Bioorthogonal Ligation‐Activated Fluorogenic FRET Dyads , 2021, Angewandte Chemie.

[4]  Ellen M. Sletten,et al.  Cell-surface Labeling via Bioorthogonal Host-Guest Chemistry. , 2021, ACS chemical biology.

[5]  Michael J. Ziegler,et al.  Bio-orthogonal Red and Far-Red Fluorogenic Probes for Wash-Free Live-Cell and Super-resolution Microscopy , 2021, ACS central science.

[6]  M. Webber,et al.  Supramolecular "Click Chemistry" for Targeting in the Body. , 2021, Bioconjugate chemistry.

[7]  B. Carney,et al.  Cucurbituril-Ferrocene: Host-Guest Based Pretargeted Positron Emission Tomography in a Xenograft Model. , 2021, Bioconjugate chemistry.

[8]  Eunha Kim,et al.  Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes , 2021, Molecules.

[9]  Sarit S. Agasti,et al.  Multiplexed optical barcoding of cells via photochemical programming of bioorthogonal host–guest recognition† , 2021, Chemical science.

[10]  Wenbing Cao,et al.  A general supramolecular approach to regulate protein functions by cucurbit[7]uril and unnatural amino acid recognition. , 2021, Angewandte Chemie.

[11]  Jingwei Zhou,et al.  A General Strategy to Design Highly Fluorogenic Far‐Red and Near‐Infrared Tetrazine Bioorthogonal Probes , 2020, Angewandte Chemie.

[12]  P. Levkin,et al.  Covalent cucurbit[7]uril–dye conjugates for sensing in aqueous saline media and biofluids , 2020, Chemical science.

[13]  Y. Liu,et al.  Cucurbituril-Based Biomacromolecular Assemblies. , 2020, Angewandte Chemie.

[14]  Ruibing Wang,et al.  Supramolecular Induction of Mitochondrial Aggregation and Fusion. , 2020, Journal of the American Chemical Society.

[15]  Alexander M. Spokoyny,et al.  Carborane Guests for Cucurbit[7]uril Facilitate Strong Binding and On-Demand Removal. , 2020, Journal of the American Chemical Society.

[16]  Jennifer A. Prescher,et al.  Developing bioorthogonal probes to span a spectrum of reactivities , 2020, Nature Reviews Chemistry.

[17]  D. H. Burke,et al.  Aptamers with Tunable Affinity Enable Single‐Molecule Tracking and Localization of Membrane Receptors on Living Cancer Cells , 2020, Angewandte Chemie.

[18]  R. Mehl,et al.  Access To Faster Eukaryotic Cell Labeling With Encoded Tetrazine Amino Acids. , 2020, Journal of the American Chemical Society.

[19]  Sarit S. Agasti,et al.  Dynamic host-guest interaction enables autonomous single molecule blinking and super-resolution imaging. , 2019, Chemical communications.

[20]  K. Yserentant,et al.  Live‐Cell Localization Microscopy with a Fluorogenic and Self‐Blinking Tetrazine Probe , 2019, Angewandte Chemie.

[21]  Hyung Ham Kim,et al.  Bioorthogonal Supramolecular Latching Inside Live Animals and Its Application for In Vivo Cancer Imaging. , 2019, ACS applied materials & interfaces.

[22]  M. Webber,et al.  Spatially Defined Drug Targeting by in Situ Host–Guest Chemistry in a Living Animal , 2019, ACS central science.

[23]  P. Kele,et al.  Fluorogenic probes for super-resolution microscopy. , 2019, Organic & biomolecular chemistry.

[24]  Xiaowei Zhuang,et al.  Visualizing and discovering cellular structures with super-resolution microscopy , 2018, Science.

[25]  Sarit S. Agasti,et al.  Synthetic Host–Guest Assembly in Cells and Tissues: Fast, Stable, and Selective Bioorthogonal Imaging via Molecular Recognition , 2018, Analytical chemistry.

[26]  Maximilian T. Strauss,et al.  Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging , 2018, Nature Methods.

[27]  Neal K. Devaraj,et al.  The Future of Bioorthogonal Chemistry , 2018, ACS central science.

[28]  Ara Lee,et al.  Supramolecular latching system based on ultrastable synthetic binding pairs as versatile tools for protein imaging , 2018, Nature Communications.

[29]  Haoxing Wu,et al.  Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. , 2018, Accounts of chemical research.

[30]  Meng Li,et al.  Autophagy Caught in the Act: A Supramolecular FRET Pair Based on an Ultrastable Synthetic Host-Guest Complex Visualizes Autophagosome-Lysosome Fusion. , 2018, Angewandte Chemie.

[31]  Eunha Kim,et al.  Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton. , 2017, Journal of the American Chemical Society.

[32]  B. Oliveira,et al.  Inverse electron demand Diels-Alder reactions in chemical biology. , 2017, Chemical Society reviews.

[33]  Alison G. Tebo,et al.  Fluorogenic Labeling Strategies for Biological Imaging , 2017, International journal of molecular sciences.

[34]  S. Samanta,et al.  Cucurbit[7]uril Enables Multi-Stimuli-Responsive Release from the Self-Assembled Hydrophobic Phase of a Metal Organic Polyhedron. , 2017, Journal of the American Chemical Society.

[35]  Peng Yin,et al.  Universal Super-Resolution Multiplexing by DNA Exchange. , 2017, Angewandte Chemie.

[36]  M. Heilemann,et al.  Single-Molecule Localization Microscopy in Eukaryotes. , 2017, Chemical reviews.

[37]  Ara Lee,et al.  Enrichment of Specifically Labeled Proteins by an Immobilized Host Molecule. , 2017, Angewandte Chemie.

[38]  E. Lemke,et al.  New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes. , 2016, Chemistry.

[39]  D. Bardelang,et al.  Correction to "Comprehensive Synthesis of Monohydroxy-Cucurbit[n]urils (n = 5, 6, 7, 8): High Purity and High Conversions". , 2016, Journal of the American Chemical Society.

[40]  Peng Yin,et al.  Optical imaging of individual biomolecules in densely packed clusters , 2016 .

[41]  Kimoon Kim,et al.  Can we beat the biotin-avidin pair?: cucurbit[7]uril-based ultrahigh affinity host-guest complexes and their applications. , 2015, Chemical Society reviews.

[42]  D. Bardelang,et al.  Comprehensive Synthesis of Monohydroxy-Cucurbit[n]urils (n = 5, 6, 7, 8): High Purity and High Conversions. , 2015, Journal of the American Chemical Society.

[43]  Sung Tae Kim,et al.  Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. , 2015, Nature chemistry.

[44]  C. Bertozzi,et al.  Design strategies for bioorthogonal smart probes. , 2014, Organic & biomolecular chemistry.

[45]  R. Weissleder,et al.  Ultrafluorogenic coumarin-tetrazine probes for real-time biological imaging. , 2014, Angewandte Chemie.

[46]  Haoxing Wu,et al.  In situ synthesis of alkenyl tetrazines for highly fluorogenic bioorthogonal live-cell imaging probes. , 2014, Angewandte Chemie.

[47]  C. Bertozzi,et al.  Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes , 2014, Proceedings of the National Academy of Sciences.

[48]  J. Chin,et al.  Bioorthogonal reactions for labeling proteins. , 2014, ACS chemical biology.

[49]  H. Janssen,et al.  Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. , 2013, Angewandte Chemie.

[50]  Hakho Lee,et al.  Ascites analysis by a microfluidic chip allows tumor-cell profiling , 2013, Proceedings of the National Academy of Sciences.

[51]  R. Weissleder,et al.  BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes. , 2013, Angewandte Chemie.

[52]  Kimoon Kim,et al.  Supramolecular velcro for reversible underwater adhesion. , 2013, Angewandte Chemie.

[53]  André Nadler,et al.  The power of fluorogenic probes. , 2013, Angewandte Chemie.

[54]  C. Bertozzi,et al.  Fluorogenic azidofluoresceins for biological imaging. , 2012, Journal of the American Chemical Society.

[55]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[56]  Adam R. Urbach,et al.  Nanomolar binding of peptides containing noncanonical amino acids by a synthetic receptor. , 2011, Journal of the American Chemical Society.

[57]  R. Weissleder,et al.  Biomedical applications of tetrazine cycloadditions. , 2011, Accounts of chemical research.

[58]  Michael K Gilson,et al.  New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. , 2011, Journal of the American Chemical Society.

[59]  Bradley Duncan,et al.  Gold nanoparticle platforms as drug and biomacromolecule delivery systems. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[60]  R. Weissleder,et al.  Bioorthogonal turn-on probes for imaging small molecules inside living cells. , 2010, Angewandte Chemie.

[61]  M. S. Gonçalves,et al.  Fluorescent labeling of biomolecules with organic probes. , 2009, Chemical reviews.

[62]  C. Bertozzi,et al.  A FRET-based fluorogenic phosphine for live-cell imaging with the Staudinger ligation. , 2008, Angewandte Chemie.

[63]  Igor L. Medintz,et al.  On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. , 2007, Nano letters.

[64]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.