Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications

Abstract. To increase the sensitivity of uncooled thermal sensors in the terahertz (THz) spectral range (1 to 10 THz), we investigated thin metamaterial layers exhibiting resonant absorption in this region. These metamaterial films are comprised of periodic arrays of aluminum (Al) squares and an Al ground plane separated by a thin silicon-rich silicon oxide (SiOx) dielectric film. These standard MEMS materials are also suitable for fabrication of bi-material and microbolometer thermal sensors. Using SiOx instead of SiO2 reduced the residual stress of the metamaterial film. Finite element simulations were performed to establish the design criteria for very thin films with high absorption and spectral tunability. Single-band structures with varying SiOx thicknesses, square size, and periodicity were fabricated and found to absorb nearly 100% at the designed frequencies between three and eight THz. Multiband absorbing structures were fabricated with two or three distinct peaks or a single-broad absorption band. Experimental results indicate that is possible to design very efficient thin THz absorbing films to match specific applications.

[1]  Thomas Maier,et al.  Wavelength-tunable microbolometers with metamaterial absorbers. , 2009, Optics letters.

[2]  S. Kumar,et al.  Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array , 2006, IEEE Photonics Technology Letters.

[3]  Qi-Ye Wen,et al.  Transmission line model and fields analysis of metamaterial absorber in the terahertz band. , 2009, Optics express.

[4]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[5]  Iam-Choon Khoo,et al.  Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. , 2011, Optics express.

[6]  R. S. Stepleman,et al.  Optical Properties of Metal-dielectric-metal Microcavities in the Thz Frequency Range References and Links , 2022 .

[7]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics express.

[8]  Toomas H. Allik,et al.  Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging , 2011 .

[9]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[10]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[11]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[12]  Qun Wu,et al.  Dual-Band Terahertz Metamaterial Absorber with Polarization Insensitivity and Wide Incident Angle , 2011 .

[13]  T. Cui,et al.  Polarization-independent wide-angle triple-band metamaterial absorber. , 2011, Optics express.

[14]  Andrew G. Glen,et al.  APPL , 2001 .

[15]  James S. Harris,et al.  Biomedical terahertz imaging with a quantum cascade laser , 2006 .

[16]  Gerald Gerlach,et al.  Thermal Infrared Sensors: Theory, Optimisation and Practice , 2011 .

[17]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[18]  N. Lavrik,et al.  Strong terahertz absorption using SiO2/Al based metamaterial structures , 2012 .

[19]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[20]  Qing Hu,et al.  Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. , 2005, Optics letters.

[21]  D. R. Chowdhury,et al.  Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. , 2011, Optics letters.

[22]  Hu Tao,et al.  Microwave and terahertz wave sensing with metamaterials. , 2011, Optics express.

[23]  E. Brown,et al.  Millimeter-wave, terahertz, and mid-infrared transmissionthrough common clothing , 2004 .

[24]  W S Grundfest,et al.  Reflective terahertz imaging of porcine skin burns. , 2008, Optics letters.

[25]  N. Lavrik,et al.  Infrared imaging using arrays of SiO2 micromechanical detectors. , 2012, Optics letters.

[26]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[27]  R H Clothier,et al.  Effects of THz Exposure on Human Primary Keratinocyte Differentiation and Viability , 2003, Journal of biological physics.

[28]  T. Cui,et al.  Ultrathin multiband gigahertz metamaterial absorbers , 2011 .

[29]  Qing Hu,et al.  Real-Time Imaging Using a 4 . 3-THz Quantum Cascade Laser and a 320 240 Microbolometer Focal-Plane Array , 2006 .

[30]  Gamani Karunasiri,et al.  Detection of 3.4 THz radiation from a quantum cascade laser using a microbolometer infrared camera , 2007, SPIE Defense + Commercial Sensing.

[31]  Hongsheng Chen,et al.  MULTI-BAND AND POLARIZATION INSENSITIVE METAMATERIAL ABSORBER , 2011 .

[32]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[33]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.