Versatile synthesis of 1-D akaganeite nanoparticles with fine-tuned exchange biasing and weak ferromagnetic effect

[1]  L. Bocher,et al.  Magnetism Engineering in Antiferromagnetic β-FeOOH Nanostructures via Chemically Induced Lattice Defects , 2022, Chemistry of Materials.

[2]  C. Innocenti,et al.  3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets. , 2022, Small.

[3]  F. W. Shashikanth,et al.  Room temperature weak ferromagnetism in new Bi2MnCrO6 synthesized by gel combustion method , 2022, Applied Physics A.

[4]  A. Haque,et al.  Effects of Bi doping on structural and magnetic properties of cobalt ferrite perovskite oxide LaCo0.5Fe0.5O3 , 2022, Ceramics International.

[5]  S. Mangin,et al.  Effect of Fe/Fe3O4 Nanoparticles Stray Field on the Microwave Magnetoresistance of a CoFeB/Ta/CoFeB Synthetic Ferrimagnet. , 2021, ACS sensors.

[6]  A. Kozioł-Rachwał,et al.  Tailorable exchange bias and memory of frozen antiferromagnetic spins in epitaxial CoO(111)/Fe(110) bilayers , 2021, Journal of Magnetism and Magnetic Materials.

[7]  E. Suharyadi,et al.  A Spin-Valve GMR Based Sensor with Magnetite@silver Core-Shell Nanoparticles as a Tag for Bovine Serum Albumin Detection , 2021, ECS Journal of Solid State Science and Technology.

[8]  Xiaofeng Xu,et al.  Coupling between antiferromagnetic and spin-glass orders in the quasi-one-dimensional iron telluride TaFe1+xTe3 ( x=0.25 ) , 2021, Physical Review B.

[9]  Wenjie Ma,et al.  The formation of uniform straw-like β-FeOOH nanostructures with superior catalytic performance for the degradation of Rhodamine B , 2021, Journal of Nanoparticle Research.

[10]  Kang L. Wang,et al.  Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque , 2020, Nature Electronics.

[11]  J. Zhou,et al.  Weak ferromagnetism in perovskite oxides , 2020 .

[12]  Yunmin Zhu,et al.  Oxygen defect engineering in double perovskite oxides for effective water oxidation , 2020 .

[13]  J. MacManus‐Driscoll,et al.  Influence of atomic roughness at the uncompensated Fe/CoO(111) interface on the exchange-bias effect , 2020, Physical Review B.

[14]  Qianhong Gao,et al.  In-situ formation of durable akaganeite (β-FeOOH) nanorods on sulfonate-modified poly(ethylene terephthalate) fabric for dual-functional wastewater treatment. , 2019, Journal of hazardous materials.

[15]  B. Kim,et al.  Synthesis of 1-D iron oxide nano-sticks: Tuning the interfacial defects and surface of nano-sticks for fine-tuned exchange biasing , 2019, Journal of Alloys and Compounds.

[16]  A. Awasthi,et al.  Uncompensated-spins Induced Weak Ferromagnetism and Magneto-conductive Effects in Ca3Mn2O7 , 2019, 1901.04778.

[17]  Xiaomei Lu,et al.  The exchange bias behavior of BiFeO3 nanoparticles with natural core-shell structure , 2018, Scientific Reports.

[18]  B. Kim,et al.  Synthesis of High-Yield Urchin-Like Akaganeite Particles for Magnetic Applications , 2017 .

[19]  K. Mandal,et al.  Evidence of Enhanced Oxygen Vacancy Defects Inducing Ferromagnetism in Multiferroic CaMn7O12 Manganite with Sintering Time , 2017 .

[20]  Yalin Lu,et al.  Engineering the exchange bias and bias temperature by modulating the spin glassy state in single phase Bi9Fe5Ti3O27. , 2017, Nanoscale.

[21]  J. Nogués,et al.  Maximizing Exchange Bias in Co/CoO Core/Shell Nanoparticles by Lattice Matching between the Shell and the Embedding Matrix , 2017 .

[22]  Dejun Li,et al.  Room temperature exchange bias in multiferroic BiFeO3 nano- and microcrystals with antiferromagnetic core and two-dimensional diluted antiferromagnetic shell , 2017, Journal of Nanoparticle Research.

[23]  Changping Yang,et al.  Positive to negative zero-field cooled exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics , 2016, Scientific Reports.

[24]  V. Biju,et al.  Defect induced ferromagnetic interaction in nanostructured nickel oxide with core-shell magnetic structure: the role of Ni(2+) and O(2-) vacancies. , 2016, Physical chemistry chemical physics : PCCP.

[25]  M. Saboungi,et al.  Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles , 2015, Scientific Reports.

[26]  A. Rockett,et al.  180° Ferroelectric Stripe Nanodomains in BiFeO3 Thin Films. , 2015, Nano letters.

[27]  A. Perumal,et al.  Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles , 2015 .

[28]  C. Felser,et al.  Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. , 2015, Nature materials.

[29]  L. Motte,et al.  Silica-Coated and Bare Akaganeite Nanorods: Structural and Magnetic Properties , 2015 .

[30]  Somenath Roy,et al.  Preparation and characterization of ferromagnetic nickel oxide nanoparticles from three different precursors: application in drug delivery , 2015 .

[31]  V. Prida,et al.  Size distribution and frustrated antiferromagnetic coupling effects on the magnetic behavior of ultrafine akaganéite (β-FeOOH) nanoparticles , 2014 .

[32]  Y. Jia,et al.  A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ion-exchange mechanism toward As(V) ions , 2014 .

[33]  Ihab M. Obaidat,et al.  Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications , 2013, International journal of molecular sciences.

[34]  L. Pi,et al.  Oxygen-Vacancy-Induced Antiferromagnetism to Ferromagnetism Transformation in Eu0.5Ba0.5TiO3−δ Multiferroic Thin Films , 2013, Scientific Reports.

[35]  Y. Ikuhara,et al.  Ferromagnetic dislocations in antiferromagnetic NiO. , 2013, Nature nanotechnology.

[36]  F. Bai,et al.  Strong exchange bias with the (110)-oriented BiFeO3 films , 2012 .

[37]  Z. Ye,et al.  Room-temperature weak ferromagnetism induced by point defects in alpha-Fe2O3. , 2010, ACS applied materials & interfaces.

[38]  Young Ran Park,et al.  The origin of oxygen vacancy induced ferromagnetism in undoped TiO2 , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  Ajay Kumar Gupta,et al.  Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. , 2007, Nanomedicine.

[40]  A. Hütten,et al.  Applications beyond data storage , 2005, Nature materials.

[41]  E. Fullerton,et al.  Hard/soft magnetic heterostructures: model exchange-spring magnets , 1999 .

[42]  Fang Wang,et al.  Photo-Controlled Exchange Bias in CoO@Co-Fe PBA Core-Shell Heterostructure , 2021, Journal of Materials Chemistry C.