ASYMPTOTICALLY EFFICIENT PRODUCT-LIMIT ESTIMATORS WITH CENSORING INDICATORS MISSING AT RANDOM

In this paper, we develop methods for estimating a survival function with censoring indicators missing at random. The resulting methods lead to the use of imputation and inverse probability weighting. We give several asymptotically efficient PL estimators. All the estimators are proved to be strongly uniformly consistent and weakly convergent to a Gaussian process. Further, it is shown that these estimators are asymptotically efficient. A simulationstudy was carried out to evaluate the finite sample performances of the proposed estimators and compare the proposed estimators with van der Laan and McKeague's (1998) estimator under missing at random (MAR) and missing completely at random (MCAR) assump- tions, respectively.

[1]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[2]  Shaw-Hwa Lo,et al.  Estimating a survival function with incomplete cause-of-death data , 1991 .

[3]  J. N. K. Rao,et al.  Empirical likelihood for linear regression models under imputation for missing responses , 2001 .

[4]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .

[5]  Gerhard Dikta,et al.  On semiparametric random censorship models , 1998 .

[6]  S. Lipsitz,et al.  Regression analysis with missing covariate data using estimating equations. , 1996, Biometrics.

[7]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[8]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[9]  D. Rubin,et al.  Small-sample degrees of freedom with multiple imputation , 1999 .

[10]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[11]  J. Shao,et al.  Jackknife variance estimation with survey data under hot deck imputation , 1992 .

[12]  Oliver Linton,et al.  Semiparametric Regression Analysis With Missing Response at Random , 2003 .

[13]  Philip E. Cheng,et al.  Nonparametric Estimation of Mean Functionals with Data Missing at Random , 1994 .

[14]  R. Gill Large Sample Behaviour of the Product-Limit Estimator on the Whole Line , 1983 .

[15]  Geert Molenberghs,et al.  A semiparametric method of multiple imputation , 1998 .

[16]  Els Goetghebeur,et al.  Analysis of competing risks survival data when some failure types are missing , 1995 .

[17]  J. N. K. Rao,et al.  Empirical likelihood-based inference under imputation for missing response data , 2002 .

[18]  J. Robins,et al.  Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers , 1992 .

[19]  J. Robins,et al.  Inference for imputation estimators , 2000 .

[20]  Anup Dewanji,et al.  A note on a test for competing risks with missing failure type , 1992 .

[21]  Guido W. Imbens,et al.  EFFICIENT ESTIMATION OF AVERAGE TREATMENT EFFECTS , 2003 .

[22]  Ian W. McKeague,et al.  Efficient Estimation from Right-Censored Data When Failure Indicators are Missing at Random , 1998 .

[23]  Els Goetghebeur,et al.  A modified log rank test for competing risks with missing failure type , 1990 .

[24]  Jon A. Wellner,et al.  Asymptotic Optimality of the Product Limit Estimator , 1982 .

[25]  K. Singh,et al.  The product-limit estimator and the bootstrap: Some asymptotic representations , 1986 .

[26]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[27]  Anastasios A. Tsiatis Multiple imputation methods for testing treatment differences in survival distributions with missing cause of failure , 2002 .

[28]  J. N. K. Rao,et al.  Empirical Likelihood‐based Inference in Linear Models with Missing Data , 2002 .

[29]  G. Dinse,et al.  Nonparametric estimation for partially-complete time and type of failure data. , 1982, Biometrics.

[30]  Zhiliang Ying,et al.  Non- and semi-parametric analysis of failure time data with missing failure indicators , 2007 .

[31]  Raymond J. Carroll,et al.  Local Linear Regression for Generalized Linear Models with Missing Data , 1998 .

[32]  Sundarraman Subramanian,et al.  Product‐limit Estimators and Cox Regression with Missing Censoring Information , 1998 .