On the consistency and finite-sample properties of nonparametric kernel time series regression, autoregression and density estimators

SummaryKernel estimators of conditional expectations and joint probability densities are studied in the context of a vector-valued stationary time series. Weak consistency is established under minimal moment conditions and under a hierarchy of weak dependence and bandwidth conditions. Prompted by these conditions, some finite-sample theory explores the effect of serial dependence on variability of estimators, and its implications for choice of bandwidth.

[1]  B. Rao Density estimation for Markov processes using delta-sequences , 1978 .

[2]  Elias Masry,et al.  Probability density estimation from sampled data , 1983, IEEE Trans. Inf. Theory.

[3]  I. Ahmad Strong consistency of density estimation by orthogonal series methods for dependent variables with applications , 1979 .

[4]  T. Cacoullos Estimation of a multivariate density , 1966 .

[5]  W. Rudin Principles of mathematical analysis , 1964 .

[6]  Density estimation for linear processes , 1983 .

[7]  高畑 弘 On Recursive Density Estimators for a Class of Stationary Processes , 1977 .

[8]  G. Roussas Nonparametric estimation in Markov processes , 1969 .

[9]  P. Tuan Nonparametric estimation of the drift coefficient in the diffusion equation , 1981 .

[10]  I. Ahmad Integrated mean square properties of density estimation by orthogonal series methods for dependent variables , 1982 .

[11]  D. Bosq Sur la prédiction non paramétrique de variables aléatoires et de mesures aléatoires , 1983 .

[12]  G. Collomb Propriétés de convergence presque complète du prédicteur à noyau , 1984 .

[13]  I. A. Ibragimov,et al.  On the Spectrum of Stationary Gaussian Sequences Satisfying the Strong Mixing Condition. II. Sufficient Conditions. Mixing Rate , 1970 .

[14]  G. Roussas Nonparametric Estimation of the Transition Distribution Function of a Markov Process , 1969 .

[15]  Melvin J. Hinich Estimating the Lag Structure of a Nonlinear Time Series Model , 1979 .

[16]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[17]  Walter Philipp,et al.  The central limit problem for mixing sequences of random variables , 1969 .

[18]  A. Georgiev Nonparametric system identification by kernel methods , 1984 .

[19]  L. Györfi Strong consistent density estimate from ergodic sample , 1981 .

[20]  I. Ahmad A note on nonparametric density estimation for dependent variables using a delta sequence , 1981 .

[21]  W. Greblicki,et al.  An orthogonal series estimate of time-varying regression , 1983 .

[22]  高畑 弘 Almost Sure Convergence of Density Estimators for Weakly Dependent Stationary Processes , 1980 .

[23]  E. J. Hannan,et al.  Multiple time series , 1970 .