Improved Algorithms for k-Domination and Total k-Domination in Proper Interval Graphs

Given a positive integer k, a k-dominating set in a graph G is a set of vertices such that every vertex not in the set has at least k neighbors in the set. A total k-dominating set, also known as a k-tuple total dominating set, is a set of vertices such that every vertex of the graph has at least k neighbors in the set. The problems of finding the minimum size of a k-dominating, resp. total k-dominating set, in a given graph, are referred to as k-domination, resp. total k-domination. These generalizations of the classical domination and total domination problems are known to be NP-hard in the class of chordal graphs, and, more specifically, even in the classes of split graphs (both problems) and undirected path graphs (in the case of total k-domination). On the other hand, it follows from recent work by Kang et al. (2017) that these two families of problems are solvable in time \(\mathcal {O}(|V(G)|^{6k+4})\) in the class of interval graphs. In this work, we develop faster algorithms for k-domination and total k-domination in the class of proper interval graphs. The algorithms run in time \(\mathcal {O}(|V(G)|^{3k})\) for each fixed \(k\ge 1\) and are also applicable to the weighted case.

[1]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[2]  Martin Vatshelle,et al.  Graph classes with structured neighborhoods and algorithmic applications , 2011, Theor. Comput. Sci..

[3]  Gerard J. Chang,et al.  On the algorithmic complexity of k-tuple total domination , 2014, Discret. Appl. Math..

[4]  Gerard J. Chang,et al.  Algorithmic aspects of the kk-domination problem in graphs , 2013, Discret. Appl. Math..

[5]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[6]  Bostjan Bresar,et al.  Dominating sequences under atomic changes with applications in Sierpi\'{n}ski and interval graphs , 2016, 1603.05116.

[7]  Odile Favaron,et al.  k-Domination and k-Independence in Graphs: A Survey , 2012, Graphs Comb..

[8]  Martin Farber,et al.  Independent domination in chordal graphs , 1982, Oper. Res. Lett..

[9]  Mathieu Liedloff,et al.  Efficient algorithms for Roman domination on some classes of graphs , 2008, Discret. Appl. Math..

[10]  Gerard J. Chang,et al.  Labeling algorithms for domination problems in sun-free chordal graphs , 1988, Discret. Appl. Math..

[11]  M. Gutierrez,et al.  Metric characterizations of proper interval graphs and tree-clique graphs , 1996, J. Graph Theory.

[12]  J. Mark Keil,et al.  Total Domination in Interval Graphs , 1986, Inf. Process. Lett..

[13]  Odile Favaron,et al.  On k-domination and minimum degree in graphs , 2008 .

[14]  D. T. Lee,et al.  Power Domination in Circular-Arc Graphs , 2011, Algorithmica.

[15]  Bhawani Sankar Panda,et al.  A linear time algorithm to compute a minimum restrained dominating set in proper interval graphs , 2015, Discret. Math. Algorithms Appl..

[16]  Martin Milanic,et al.  New Algorithms for Weighted k-Domination and Total k-Domination Problems in Proper Interval Graphs , 2018, Theor. Comput. Sci..

[17]  Wen-Lian Hsu,et al.  Linear Time Algorithms on Circular-Arc Graphs , 1991, Inf. Process. Lett..

[18]  Jochen Harant,et al.  A note on domination in bipartite graphs , 2002, Discuss. Math. Graph Theory.

[19]  Alan A. Bertossi,et al.  Total Domination in Interval Graphs , 1986, Inf. Process. Lett..

[20]  Frank Harary,et al.  Double Domination in Graphs , 2000, Ars Comb..

[21]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[22]  Frédéric Gardi,et al.  The Roberts characterization of proper and unit interval graphs , 2007, Discret. Math..

[23]  Hirotaka Ono,et al.  Subexponential fixed-parameter algorithms for partial vector domination , 2016, Discret. Optim..

[24]  Martin Milanič,et al.  Latency-bounded target set selection in social networks , 2013, Theor. Comput. Sci..

[25]  Madhumangal Pal,et al.  Minimum 2-Tuple Dominating Set of an Interval Graph , 2011 .

[26]  Cid C. de Souza,et al.  The Eternal Dominating Set problem for proper interval graphs , 2015, Inf. Process. Lett..

[27]  Simon Perdrix,et al.  The Parameterized Complexity of Domination-Type Problems and Application to Linear Codes , 2012, TAMC.

[28]  Michael A. Henning,et al.  K-tuple Total Domination in Graphs , 2010, Discret. Appl. Math..

[29]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[30]  Jochen Harant,et al.  On Dominating Sets and Independent Sets of Graphs , 1999, Combinatorics, Probability and Computing.

[31]  Wayne Goddard,et al.  Bounds on the k-domination number of a graph , 2011, Appl. Math. Lett..

[32]  Martin Milanic,et al.  On the approximability and exact algorithms for vector domination and related problems in graphs , 2010, Discret. Appl. Math..

[33]  Elsev Iek The algorithmic use of hypertree structure and maximum neighbourhood orderings , 2003 .

[34]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[35]  Dinabandhu Pradhan,et al.  Algorithmic aspects of k-tuple total domination in graphs , 2012, Inf. Process. Lett..

[36]  Maw-Shang Chang,et al.  Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs , 1992, SIAM J. Comput..

[37]  C. Pandu Rangan,et al.  Weighted Independent Perfect Domination on Cocomparability Graphs , 1993, Discret. Appl. Math..

[38]  Adriana Hansberg,et al.  On kk-domination and jj-independence in graphs , 2013, Discret. Appl. Math..

[39]  Jan Arne Telle,et al.  A width parameter useful for chordal and co-comparability graphs , 2017, Theor. Comput. Sci..

[40]  Mustapha Chellali,et al.  Trees with equal 2-domination and 2-independence numbers , 2012, Discuss. Math. Graph Theory.

[41]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[42]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[43]  Gabriela R. Argiroffo,et al.  Complexity of k-tuple total and total {k}-dominations for some subclasses of bipartite graphs , 2018, Inf. Process. Lett..

[44]  C. Pandu Rangan,et al.  Total Domination in Interval Graphs Revisited , 1988, Inf. Process. Lett..

[45]  Zygmunt Jackowski A new characterization of proper interval graphs , 1992, Discret. Math..

[46]  Linda Annam Varghese,et al.  DOMINATION IN GRAPHS , 2016 .

[47]  Davood Bakhshesh,et al.  Complexity results for k-domination and α-domination problems and their variants , 2017, ArXiv.

[48]  Yue-Li Wang,et al.  Finding outer-connected dominating sets in interval graphs , 2015, Inf. Process. Lett..

[49]  M. Jacobson,et al.  n-Domination in graphs , 1985 .

[50]  Chuan-Min Lee,et al.  Variations of Y-dominating functions on graphs , 2008, Discret. Math..

[51]  Chung-Shou Liao,et al.  K-tuple Domination in Graphs , 2003, Inf. Process. Lett..

[52]  T. C. Edwin Cheng,et al.  Paired domination on interval and circular-arc graphs , 2007, Discret. Appl. Math..

[53]  Adel P. Kazemi,et al.  On the total k-domination number of graphs , 2012, Discuss. Math. Graph Theory.

[54]  Hirotaka Ono,et al.  Subexponential fixed-parameter algorithms for partial vector domination , 2014, Discret. Optim..

[55]  Jan Arne Telle,et al.  Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems , 2013, Theor. Comput. Sci..

[56]  Bhawani Sankar Panda,et al.  A linear time algorithm for liar's domination problem in proper interval graphs , 2013, Inf. Process. Lett..

[57]  Ono Hirotaka,et al.  Total) Vector Domination for Graphs with Bounded Branchwidth , 2014 .