Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation
暂无分享,去创建一个
Ricardo Grau-Crespo | Iman Saadoune | N. D. de Leeuw | R. Grau-Crespo | A. Al-Baitai | I. Saadoune | Asmaa Y Al-Baitai | Nora H De Leeuw | R. Grau‐Crespo
[1] A. W. Overhauser,et al. Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .
[2] Ricardo Grau-Crespo,et al. Symmetry-adapted configurational modelling of fractional site occupancy in solids , 2007 .
[3] E. Watson,et al. The impact of crystal growth rate on element ratios in aragonite: An experimental approach to understanding vital effects , 2006 .
[4] Q. Pankhurst,et al. Applications of magnetic nanoparticles in biomedicine , 2003 .
[5] A. R. Ruiz-Salvador,et al. A computer simulation study of distribution, structure and acid strength of active sites in H-ZSM-5 catalyst , 2000 .
[6] G. W. Oosterhout,et al. A New Superstructure in Gamma-Ferric Oxide , 1958, Nature.
[7] E. Verwey. The Crystal Structure of γ-Fe2O3 and γ-Al2O3 , 1935 .
[8] L. Néel,et al. Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .
[9] N. D. de Leeuw,et al. A theoretical investigation of alpha-Fe2O3-Cr2O3 solid solutions. , 2009, Physical chemistry chemical physics : PCCP.
[10] Julian D. Gale,et al. The General Utility Lattice Program (GULP) , 2003 .
[11] C. Catlow,et al. Electronic structure and magnetic coupling inFeSbO4: A DFT study using hybrid functionals andGGA+Umethods , 2006 .
[12] C. Catlow,et al. A computer modeling study of redox processes on the FeSbO4 (100) surface , 2007 .
[13] J. Zaanen,et al. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.
[14] G. Waychunas. Crystal chemistry of oxides and oxyhydroxides , 1991 .
[15] A. Chuvilin,et al. Vacancy Ordering in γ‐Fe2O3: Synchrotron X‐ray Powder Diffraction and High‐Resolution Electron Microscopy Studies , 1995 .
[16] Georg Kresse,et al. Electronic correlation effects in transition-metal sulfides , 2003 .
[17] C. Catlow,et al. Cation distribution and magnetic ordering in FeSbO4 , 2003 .
[18] E. E. Carpenter,et al. Magnetoresistance of a (γ-Fe2O3)80Ag20 nanocomposite prepared in reverse micelles , 2000 .
[19] G. Burns,et al. Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. , 2005, The journal of physical chemistry. B.
[20] M. Born,et al. Dynamical Theory of Crystal Lattices , 1954 .
[21] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[22] M. Litter,et al. Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media , 1992 .
[23] J. Hafner,et al. Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations , 2004 .
[24] Julian D. Gale,et al. GULP: Capabilities and prospects , 2005 .
[25] I. Sajó,et al. Vacancy ordering in nanosized maghemite from neutron and X-ray powder diffraction , 2002 .
[26] U. Schwertmann,et al. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .
[27] Julian D. Gale,et al. GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .
[28] V. Anisimov,et al. Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.
[29] Richard Dronskowski,et al. The Little Maghemite Story: A Classic Functional Material , 2001 .
[30] M. Hill,et al. Vacancy ordering in γ-Fe2O3 nanocrystals observed by 57Fe NMR , 2009 .
[31] P. B. Braun. A Superstructure in Spinels , 1952, Nature.
[32] J. Hanson,et al. Formation of γ-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study , 2007 .
[33] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[34] S. K. Joshi,et al. Thermal Expansion of Ionic Crystals , 1961 .
[35] Jagadeesh S. Moodera,et al. The phenomena of spin-filter tunnelling , 2007 .
[36] S. Mørup,et al. Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals. , 1998 .
[37] C. Catlow,et al. Atomistic computer simulations of yttrium iron garnet (YIG) as an approach to materials defect chemistry. I. Intrinsic defects , 1993 .
[38] T. G. Cooper,et al. Surface simulation studies of the hydration of white rust Fe(OH)2, goethite α-FeO(OH) and hematite α-Fe2O3 , 2007 .
[39] Jürgen Hafner,et al. First-principles calculation of the structure and magnetic phases of hematite , 2004 .
[40] Jürgen Hafner,et al. Materials simulations using VASP - a quantum perspective to materials science , 2007, Comput. Phys. Commun..
[41] The effect of cation coordination on the properties of oxygen vacancies in FeSbO4 , 2006 .
[42] C. Greaves. A powder neutron diffraction investigation of vacancy ordering and covalence in γ-Fe2O3 , 1983 .
[43] C. Catlow,et al. Potential models for ionic oxides , 1985 .
[44] J. Bacri,et al. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.
[45] S. C. Parker,et al. Atomistic simulation of the structure and segregation to the (0001) and surfaces of Fe2O3 , 2004 .