Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation

The crystal structure of the iron oxide γ-Fe₂O₃ is usually reported in either the cubic system (space group P4(3)32) with partial Fe vacancy disorder or in the tetragonal system (space group P4(1)2(1)2) with full site ordering and c/a≈3. Using a supercell of the cubic structure, we obtain the spectrum of energies of all the ordered configurations which contribute to the partially disordered P4(3)32 cubic structure. Our results show that the configuration with space group P4(1)2(1)2 is indeed much more stable than the others, and that this stability arises from a favourable electrostatic contribution, as this configuration exhibits the maximum possible homogeneity in the distribution of iron cations and vacancies. Maghemite is therefore expected to be fully ordered in equilibrium, and deviations from this behaviour should be associated with metastable growth, extended anti-site defects and surface effects in the case of small nanoparticles. The confirmation of the ordered tetragonal structure allows us to investigate the electronic structure of the material using density functional theory (DFT) calculations. The inclusion of a Hubbard (DFT + U) correction allows the calculation of a band gap in good agreement with experiment. The value of the gap is dependent on the electron spin, which is the basis for the spin-filtering properties of maghemite.

[1]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[2]  Ricardo Grau-Crespo,et al.  Symmetry-adapted configurational modelling of fractional site occupancy in solids , 2007 .

[3]  E. Watson,et al.  The impact of crystal growth rate on element ratios in aragonite: An experimental approach to understanding vital effects , 2006 .

[4]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[5]  A. R. Ruiz-Salvador,et al.  A computer simulation study of distribution, structure and acid strength of active sites in H-ZSM-5 catalyst , 2000 .

[6]  G. W. Oosterhout,et al.  A New Superstructure in Gamma-Ferric Oxide , 1958, Nature.

[7]  E. Verwey The Crystal Structure of γ-Fe2O3 and γ-Al2O3 , 1935 .

[8]  L. Néel,et al.  Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .

[9]  N. D. de Leeuw,et al.  A theoretical investigation of alpha-Fe2O3-Cr2O3 solid solutions. , 2009, Physical chemistry chemical physics : PCCP.

[10]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[11]  C. Catlow,et al.  Electronic structure and magnetic coupling inFeSbO4: A DFT study using hybrid functionals andGGA+Umethods , 2006 .

[12]  C. Catlow,et al.  A computer modeling study of redox processes on the FeSbO4 (100) surface , 2007 .

[13]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[14]  G. Waychunas Crystal chemistry of oxides and oxyhydroxides , 1991 .

[15]  A. Chuvilin,et al.  Vacancy Ordering in γ‐Fe2O3: Synchrotron X‐ray Powder Diffraction and High‐Resolution Electron Microscopy Studies , 1995 .

[16]  Georg Kresse,et al.  Electronic correlation effects in transition-metal sulfides , 2003 .

[17]  C. Catlow,et al.  Cation distribution and magnetic ordering in FeSbO4 , 2003 .

[18]  E. E. Carpenter,et al.  Magnetoresistance of a (γ-Fe2O3)80Ag20 nanocomposite prepared in reverse micelles , 2000 .

[19]  G. Burns,et al.  Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. , 2005, The journal of physical chemistry. B.

[20]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[21]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[22]  M. Litter,et al.  Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media , 1992 .

[23]  J. Hafner,et al.  Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations , 2004 .

[24]  Julian D. Gale,et al.  GULP: Capabilities and prospects , 2005 .

[25]  I. Sajó,et al.  Vacancy ordering in nanosized maghemite from neutron and X-ray powder diffraction , 2002 .

[26]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[27]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[28]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[29]  Richard Dronskowski,et al.  The Little Maghemite Story: A Classic Functional Material , 2001 .

[30]  M. Hill,et al.  Vacancy ordering in γ-Fe2O3 nanocrystals observed by 57Fe NMR , 2009 .

[31]  P. B. Braun A Superstructure in Spinels , 1952, Nature.

[32]  J. Hanson,et al.  Formation of γ-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study , 2007 .

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  S. K. Joshi,et al.  Thermal Expansion of Ionic Crystals , 1961 .

[35]  Jagadeesh S. Moodera,et al.  The phenomena of spin-filter tunnelling , 2007 .

[36]  S. Mørup,et al.  Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals. , 1998 .

[37]  C. Catlow,et al.  Atomistic computer simulations of yttrium iron garnet (YIG) as an approach to materials defect chemistry. I. Intrinsic defects , 1993 .

[38]  T. G. Cooper,et al.  Surface simulation studies of the hydration of white rust Fe(OH)2, goethite α-FeO(OH) and hematite α-Fe2O3 , 2007 .

[39]  Jürgen Hafner,et al.  First-principles calculation of the structure and magnetic phases of hematite , 2004 .

[40]  Jürgen Hafner,et al.  Materials simulations using VASP - a quantum perspective to materials science , 2007, Comput. Phys. Commun..

[41]  The effect of cation coordination on the properties of oxygen vacancies in FeSbO4 , 2006 .

[42]  C. Greaves A powder neutron diffraction investigation of vacancy ordering and covalence in γ-Fe2O3 , 1983 .

[43]  C. Catlow,et al.  Potential models for ionic oxides , 1985 .

[44]  J. Bacri,et al.  Magnetically induced hyperthermia: size-dependent heating power of γ-Fe2O3 nanoparticles , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  S. C. Parker,et al.  Atomistic simulation of the structure and segregation to the (0001) and surfaces of Fe2O3 , 2004 .