Graphical quantum Clifford-encoder compilers from the ZX calculus

We present a quantum compilation algorithm that maps Clifford encoders, encoding maps for stabilizer quantum codes, to a unique graphical representation in the ZX calculus. Specifically, we develop a canonical form in the ZX calculus and prove canonicity as well as efficient reducibility of any Clifford encoder into the canonical form. The diagrams produced by our compiler visualize information propagation and entanglement structure of the encoder, revealing properties that may be obscured in the circuit or stabilizer-tableau representation. Consequently, our canonical representation may be an informative technique for the design of new stabilizer quantum codes via graph theory analysis.

[1]  B. Zeng,et al.  A ZX-Calculus Approach for the Construction of Graph Codes , 2023, 2304.08363.

[2]  R. Wille,et al.  Equivalence Checking of Quantum Circuits With the ZX-Calculus , 2022, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[3]  Miriam Backens,et al.  Complete Flow-Preserving Rewrite Rules for MBQC Patterns with Pauli Measurements , 2022, QPL.

[4]  A. Kissinger Phase-free ZX diagrams are CSS codes (...or how to graphically grok the surface code) , 2022, 2204.14038.

[5]  U. Vazirani,et al.  Efficient Certifiable Randomness from a Single Quantum Device , 2022, ArXiv.

[6]  Adam Bouland,et al.  Efficient Universal Quantum Compilation: An Inverse-free Solovay-Kitaev Algorithm , 2021, ArXiv.

[7]  E. Prati,et al.  Quantum Compiling , 2021, ArXiv.

[8]  Alexander Tianlin Hu,et al.  Improved graph formalism for quantum circuit simulation , 2021, Physical Review A.

[9]  Shahn Majid,et al.  Quantum double aspects of surface code models , 2021, Journal of Mathematical Physics.

[10]  Marcello Restelli,et al.  Quantum compiling by deep reinforcement learning , 2021, Communications Physics.

[11]  J. V. D. Wetering ZX-calculus for the working quantum computer scientist , 2020, 2012.13966.

[12]  J. V. D. Wetering,et al.  Constructing quantum circuits with global gates , 2020, New Journal of Physics.

[13]  A. Grushin,et al.  AKLT-States as ZX-Diagrams: Diagrammatic Reasoning for Quantum States , 2020, PRX Quantum.

[14]  Aleks Kissinger,et al.  Reducing the number of non-Clifford gates in quantum circuits , 2020, Physical Review A.

[15]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[16]  C. K. Andersen,et al.  Repeated quantum error detection in a surface code , 2019, Nature Physics.

[17]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[18]  Jian-Wei Pan,et al.  Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a 10^{14}-Dimensional Hilbert Space. , 2019, Physical review letters.

[19]  Casper R. Breum,et al.  Deterministic generation of a two-dimensional cluster state , 2019, Science.

[20]  Aleks Kissinger,et al.  Graph-theoretic Simplification of Quantum Circuits with the ZX-calculus , 2019, Quantum.

[21]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[22]  Zvika Brakerski,et al.  A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum Device , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[23]  Dominic Horsman,et al.  The ZX calculus is a language for surface code lattice surgery , 2017, Quantum.

[24]  Stefan Zohren,et al.  Graphical structures for design and verification of quantum error correction , 2016, Quantum Science and Technology.

[25]  N. J. Ross Optimal ancilla-free Clifford+V approximation of z-rotations , 2015, Quantum Inf. Comput..

[26]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[27]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[28]  Ross Duncan,et al.  Verifying the Steane code with Quantomatic , 2013, QPL.

[29]  Dmitri Maslov,et al.  Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits , 2012, IEEE Transactions on Computers.

[30]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[31]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[32]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[33]  Yazhen Wang,et al.  Quantum Computation and Quantum Information , 2012, 1210.0736.

[34]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[35]  Avinatan Hassidim,et al.  Quantum money from knots , 2010, ITCS '12.

[36]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[37]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[38]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[39]  A. Harrow,et al.  Superdense coding of quantum states. , 2003, Physical review letters.

[40]  E. Knill,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[41]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[42]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[43]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[44]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  P. Shor Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[47]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .