Intensity mapping with neutral hydrogen and the Hidden Valley simulations
暂无分享,去创建一个
Yu Feng | Chirag Modi | Martin White | Emanuele Castorina | M. White | Yu Feng | E. Castorina | C. Modi
[1] H. C. Chiang,et al. HIRAX: a probe of dark energy and radio transients , 2016, Astronomical Telescopes + Instrumentation.
[2] P. Mcdonald,et al. FastPM: a new scheme for fast simulations of dark matter and haloes , 2016, 1603.00476.
[3] G. Swenson,et al. Interferometry and Synthesis in Radio Astronomy , 1986 .
[4] Ruby Byrne,et al. Fundamental Limitations on the Calibration of Redundant 21 cm Cosmology Instruments and Implications for HERA and the SKA , 2018, The Astrophysical Journal.
[5] Yu Feng,et al. Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys , 2017, Monthly Notices of the Royal Astronomical Society.
[6] A. Amara,et al. A halo model for cosmological neutral hydrogen : abundances and clustering , 2016, 1611.06235.
[7] M. White. Reconstruction within the Zeldovich approximation , 2015, 1504.03677.
[8] C. Faucher-Giguère,et al. ON LYMAN-LIMIT SYSTEMS AND THE EVOLUTION OF THE INTERGALACTIC IONIZING BACKGROUND , 2011, 1101.1964.
[9] M. Crocce,et al. Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.
[10] M. White,et al. Erratum: The Zeldovich approximation and wide-angle redshift-space distortions , 2018, Monthly Notices of the Royal Astronomical Society.
[11] M. White,et al. Cosmology with dropout selection: straw-man surveys & CMB lensing , 2019, Journal of Cosmology and Astroparticle Physics.
[12] D. Weinberg,et al. The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations , 2013, 1302.3631.
[13] E. R. Switzer,et al. Determination of z ∼ 0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping autocorrelation , 2013, 1304.3712.
[14] M. White,et al. Modeling CMB lensing cross correlations with CLEFT , 2017, 1706.03173.
[15] Ravi K. Sheth Giuseppe Tormen. Large scale bias and the peak background split , 1999 .
[16] P. Alam. ‘N’ , 2021, Composites Engineering: An A–Z Guide.
[17] M. White,et al. Exploring redshift-space distortions in large-scale structure , 2018, Journal of Cosmology and Astroparticle Physics.
[18] D. Eisenstein,et al. Non-linear Structure Formation and the Acoustic Scale , 2022 .
[19] A new scale in the bias expansion , 2018, Journal of Cosmology and Astroparticle Physics.
[20] C. Carilli,et al. BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010, 1005.4071.
[21] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[22] A. Meiksin,et al. Estimates for the impact of ultraviolet background fluctuations on galaxy clustering measurements , 2018, Monthly Notices of the Royal Astronomical Society.
[23] N. Busca,et al. On the effect of the ionizing background on the Lyα forest autocorrelation function , 2014, 1404.7425.
[24] Abhirup Datta,et al. BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .
[25] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[26] David F. Moore,et al. A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.
[27] Evan J. Arena,et al. Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping experiment , 2018, 1810.09572.
[28] A. Stebbins,et al. ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES , 2013, 1302.0327.
[29] D. Eisenstein,et al. On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.
[30] Matias Zaldarriaga,et al. Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.
[31] P. Alam. ‘E’ , 2021, Composites Engineering: An A–Z Guide.
[32] Y. Zel’dovich. Gravitational instability: An Approximate theory for large density perturbations , 1969 .
[33] C. Giocoli,et al. UNIT project: Universe N-body simulations for the Investigation of Theoretical models from galaxy surveys , 2018, Monthly Notices of the Royal Astronomical Society.
[34] Philip Bull,et al. LATE-TIME COSMOLOGY WITH 21 cm INTENSITY MAPPING EXPERIMENTS , 2014, 1405.1452.
[35] S. Bharadwaj. Perturbative Growth of Cosmological Clustering. II. The Two-Point Correlation , 1995, astro-ph/9511085.
[36] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[37] A. Réfrégier,et al. Theoretical and observational constraints on the H i intensity power spectrum , 2014, 1407.6366.
[38] C. Brook,et al. THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES , 2013, 1311.5492.
[39] G. Efstathiou,et al. The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .
[40] M. Blomqvist,et al. The SDSS-DR12 large-scale cross-correlation of damped Lyman alpha systems with the Lyman alpha forest , 2017, 1709.00889.
[41] M. Zaldarriaga,et al. The Signatures of Large-scale Temperature and Intensity Fluctuations in the Lyman-alpha Forest , 2010, 1010.5250.
[42] Scott Dodelson,et al. A GROUND-BASED 21 cm BARYON ACOUSTIC OSCILLATION SURVEY , 2009, 0910.5007.
[43] Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.
[44] A. Meiksin,et al. Time-dependent fluctuations in the metagalactic photoionization background , 2018, Monthly Notices of the Royal Astronomical Society.
[45] S. Foreman,et al. Precision comparison of the power spectrum in the EFTofLSS with simulations , 2015, 1507.05326.
[46] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[47] Bryna Hazelton,et al. FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.
[48] Scale-dependent bias in the baryonic-acoustic-oscillation-scale intergalactic neutral hydrogen , 2014, 1402.0506.
[49] Z. Cai,et al. The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS , 2017, 1710.09390.
[50] K. Lee,et al. Protocluster discovery in tomographic Ly α forest flux maps , 2014, 1412.1507.
[51] M. White. The Mass Function , 2002, astro-ph/0207185.
[52] F. Villaescusa-Navarro,et al. The H i content of dark matter haloes at z ≈ 0 from ALFALFA , 2018, Monthly Notices of the Royal Astronomical Society.
[53] M. Viel,et al. High-redshift post-reionization cosmology with 21cm intensity mapping , 2017, 1709.07893.
[54] C. Blake,et al. Determining the H i content of galaxies via intensity mapping cross-correlations , 2017, 1703.08268.
[55] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[56] N. Padmanabhan,et al. Matched filtering with interferometric 21 cm experiments , 2017, 1705.09669.
[57] F. Villaescusa-Navarro,et al. On the spatial distribution of neutral hydrogen in the Universe: bias and shot-noise of the H i power spectrum , 2016, 1609.05157.
[58] Adam G. Riess,et al. Observational probes of cosmic acceleration , 2012, 1201.2434.
[59] Ue-Li Pen,et al. Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis , 2014, 1401.2095.
[60] M. McQuinn. The Evolution of the Intergalactic Medium , 2015, 1512.00086.
[61] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[62] T. Matsubara,et al. Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.
[63] Jonathan C. Pober,et al. The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line , 2014, 1411.2050.
[64] E. R. Switzer,et al. MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION , 2012, 1208.0331.
[65] A. Hamilton,et al. Linear redshift distortions: A Review , 1997, astro-ph/9708102.
[66] M. White,et al. A SIMPLE MODEL FOR QUASAR DEMOGRAPHICS , 2012, 1208.3198.
[67] P. Alam. ‘G’ , 2021, Composites Engineering: An A–Z Guide.
[68] M. White,et al. Measuring the growth of structure with intensity mapping surveys , 2019, Journal of Cosmology and Astroparticle Physics.
[69] Graeme Smecher,et al. Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder , 2014, Astronomical Telescopes and Instrumentation.
[70] Edwin Sirko,et al. Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .
[71] C. Baugh,et al. The fate of substructures in cold dark matter haloes , 2008, 0810.2177.
[72] Christopher M. Hirata,et al. The foreground wedge and 21-cm BAO surveys , 2015, 1508.06503.
[73] Yu Feng,et al. A fast algorithm for identifying Friends-of-Friends halos , 2016, Astron. Comput..
[74] R. Bower,et al. The distribution of neutral hydrogen around high-redshift galaxies and quasars in the EAGLE simulation , 2015, 1503.05553.
[75] M. Zaldarriaga,et al. 21 Centimeter Fluctuations from Cosmic Gas at High Redshifts , 2003, astro-ph/0311514.
[76] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[77] Martin White,et al. Beyond the plane-parallel approximation for redshift surveys , 2017, 1709.09730.
[78] S. White,et al. Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.
[79] P. Alam. ‘L’ , 2021, Composites Engineering: An A–Z Guide.
[80] Dark matter subhaloes in numerical simulations , 2004, astro-ph/0406034.
[81] Andrew P. Hearin,et al. UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.
[82] George D. Becker,et al. The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.
[83] M. Viel,et al. Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case , 2016, 1609.00019.
[84] A. Slosar,et al. Synergies between radio, optical and microwave observations at high redshift , 2018, Journal of Cosmology and Astroparticle Physics.
[85] R. Smith,et al. Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.
[86] J. Hennawi,et al. Evolution of the AGN UV luminosity function from redshift 7.5 , 2018, Monthly Notices of the Royal Astronomical Society.
[87] Xuelei Chen,et al. THE TIANLAI PROJECT: A 21CM COSMOLOGY EXPERIMENT , 2012, 1212.6278.
[88] B. Reid,et al. Convolution Lagrangian perturbation theory for biased tracers , 2012, 1209.0780.
[89] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[90] M. White,et al. The Gaussian streaming model and convolution Lagrangian effective field theory , 2016, 1609.02908.
[91] Tsuyoshi Murata,et al. {m , 1934, ACML.
[92] N. Oppermann,et al. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities , 2017, 1710.00424.
[93] David N. Spergel,et al. Ingredients for 21 cm Intensity Mapping , 2018, The Astrophysical Journal.
[94] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[95] A. Pontzen,et al. Cosmological N-body simulations with suppressed variance , 2016, 1603.05253.
[96] P. Alam. ‘S’ , 2021, Composites Engineering: An A–Z Guide.
[97] M. White,et al. A Lagrangian effective field theory , 2015, 1506.05264.
[98] P. Ferreira,et al. Calibrating photometric redshifts with intensity mapping observations , 2017, 1704.01941.
[99] A. Meiksin,et al. The physics of the intergalactic medium , 2007, 0711.3358.
[100] Cathryn M. Trott,et al. Epoch of reionization window. II. Statistical methods for foreground wedge reduction , 2014, 1404.4372.
[101] L. Moscardini,et al. Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.
[102] M. White. The Zel'dovich approximation , 2014, 1401.5466.
[103] Chirag Modi,et al. Halo bias in Lagrangian Space: Estimators and theoretical predictions , 2016, 1612.01621.
[104] N. Padmanabhan,et al. Combining galaxy and 21-cm surveys , 2015, 1511.07377.
[105] P. Alam. ‘K’ , 2021, Composites Engineering.
[106] Martin J. Rees,et al. Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.