Intensity mapping with neutral hydrogen and the Hidden Valley simulations

This paper introduces the Hidden Valley simulations, a set of trillion-particle N-body simulations in gigaparsec volumes aimed at intensity mapping science. We present details of the simulations and their convergence, then specialize to the study of 21-cm fluctuations between redshifts 2 and 6. Neutral hydrogen is assigned to halos using three prescriptions, and we investigate the clustering in real and redshift-space at the 2-point level. In common with earlier work we find the bias of HI increases from near 2 at z = 2 to 4 at z = 6, becoming more scale dependent at high z. The level of scale-dependence and decorrelation with the matter field are as predicted by perturbation theory. Due to the low mass of the hosting halos, the impact of fingers of god is small on the range relevant for proposed 21-cm instruments. We show that baryon acoustic oscillations and redshift-space distortions could be well measured by such instruments. Taking advantage of the large simulation volume, we assess the impact of fluctuations in the ultraviolet background, which change HI clustering primarily at large scales.

[1]  H. C. Chiang,et al.  HIRAX: a probe of dark energy and radio transients , 2016, Astronomical Telescopes + Instrumentation.

[2]  P. Mcdonald,et al.  FastPM: a new scheme for fast simulations of dark matter and haloes , 2016, 1603.00476.

[3]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[4]  Ruby Byrne,et al.  Fundamental Limitations on the Calibration of Redundant 21 cm Cosmology Instruments and Implications for HERA and the SKA , 2018, The Astrophysical Journal.

[5]  Yu Feng,et al.  Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys , 2017, Monthly Notices of the Royal Astronomical Society.

[6]  A. Amara,et al.  A halo model for cosmological neutral hydrogen : abundances and clustering , 2016, 1611.06235.

[7]  M. White Reconstruction within the Zeldovich approximation , 2015, 1504.03677.

[8]  C. Faucher-Giguère,et al.  ON LYMAN-LIMIT SYSTEMS AND THE EVOLUTION OF THE INTERGALACTIC IONIZING BACKGROUND , 2011, 1101.1964.

[9]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[10]  M. White,et al.  Erratum: The Zeldovich approximation and wide-angle redshift-space distortions , 2018, Monthly Notices of the Royal Astronomical Society.

[11]  M. White,et al.  Cosmology with dropout selection: straw-man surveys & CMB lensing , 2019, Journal of Cosmology and Astroparticle Physics.

[12]  D. Weinberg,et al.  The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations , 2013, 1302.3631.

[13]  E. R. Switzer,et al.  Determination of z ∼ 0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping autocorrelation , 2013, 1304.3712.

[14]  M. White,et al.  Modeling CMB lensing cross correlations with CLEFT , 2017, 1706.03173.

[15]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[16]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[17]  M. White,et al.  Exploring redshift-space distortions in large-scale structure , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  D. Eisenstein,et al.  Non-linear Structure Formation and the Acoustic Scale , 2022 .

[19]  A new scale in the bias expansion , 2018, Journal of Cosmology and Astroparticle Physics.

[20]  C. Carilli,et al.  BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010, 1005.4071.

[21]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[22]  A. Meiksin,et al.  Estimates for the impact of ultraviolet background fluctuations on galaxy clustering measurements , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  N. Busca,et al.  On the effect of the ionizing background on the Lyα forest autocorrelation function , 2014, 1404.7425.

[24]  Abhirup Datta,et al.  BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .

[25]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[26]  David F. Moore,et al.  A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.

[27]  Evan J. Arena,et al.  Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping experiment , 2018, 1810.09572.

[28]  A. Stebbins,et al.  ALL-SKY INTERFEROMETRY WITH SPHERICAL HARMONIC TRANSIT TELESCOPES , 2013, 1302.0327.

[29]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[30]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[31]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[32]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[33]  C. Giocoli,et al.  UNIT project: Universe N-body simulations for the Investigation of Theoretical models from galaxy surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[34]  Philip Bull,et al.  LATE-TIME COSMOLOGY WITH 21 cm INTENSITY MAPPING EXPERIMENTS , 2014, 1405.1452.

[35]  S. Bharadwaj Perturbative Growth of Cosmological Clustering. II. The Two-Point Correlation , 1995, astro-ph/9511085.

[36]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[37]  A. Réfrégier,et al.  Theoretical and observational constraints on the H i intensity power spectrum , 2014, 1407.6366.

[38]  C. Brook,et al.  THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES , 2013, 1311.5492.

[39]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[40]  M. Blomqvist,et al.  The SDSS-DR12 large-scale cross-correlation of damped Lyman alpha systems with the Lyman alpha forest , 2017, 1709.00889.

[41]  M. Zaldarriaga,et al.  The Signatures of Large-scale Temperature and Intensity Fluctuations in the Lyman-alpha Forest , 2010, 1010.5250.

[42]  Scott Dodelson,et al.  A GROUND-BASED 21 cm BARYON ACOUSTIC OSCILLATION SURVEY , 2009, 0910.5007.

[43]  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[44]  A. Meiksin,et al.  Time-dependent fluctuations in the metagalactic photoionization background , 2018, Monthly Notices of the Royal Astronomical Society.

[45]  S. Foreman,et al.  Precision comparison of the power spectrum in the EFTofLSS with simulations , 2015, 1507.05326.

[46]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[47]  Bryna Hazelton,et al.  FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.

[48]  Scale-dependent bias in the baryonic-acoustic-oscillation-scale intergalactic neutral hydrogen , 2014, 1402.0506.

[49]  Z. Cai,et al.  The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS , 2017, 1710.09390.

[50]  K. Lee,et al.  Protocluster discovery in tomographic Ly α forest flux maps , 2014, 1412.1507.

[51]  M. White The Mass Function , 2002, astro-ph/0207185.

[52]  F. Villaescusa-Navarro,et al.  The H i content of dark matter haloes at z ≈ 0 from ALFALFA , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  M. Viel,et al.  High-redshift post-reionization cosmology with 21cm intensity mapping , 2017, 1709.07893.

[54]  C. Blake,et al.  Determining the H i content of galaxies via intensity mapping cross-correlations , 2017, 1703.08268.

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  N. Padmanabhan,et al.  Matched filtering with interferometric 21 cm experiments , 2017, 1705.09669.

[57]  F. Villaescusa-Navarro,et al.  On the spatial distribution of neutral hydrogen in the Universe: bias and shot-noise of the H i power spectrum , 2016, 1609.05157.

[58]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[59]  Ue-Li Pen,et al.  Coaxing cosmic 21 cm fluctuations from the polarized sky using m -mode analysis , 2014, 1401.2095.

[60]  M. McQuinn The Evolution of the Intergalactic Medium , 2015, 1512.00086.

[61]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[62]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[63]  Jonathan C. Pober,et al.  The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line , 2014, 1411.2050.

[64]  E. R. Switzer,et al.  MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION , 2012, 1208.0331.

[65]  A. Hamilton,et al.  Linear redshift distortions: A Review , 1997, astro-ph/9708102.

[66]  M. White,et al.  A SIMPLE MODEL FOR QUASAR DEMOGRAPHICS , 2012, 1208.3198.

[67]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[68]  M. White,et al.  Measuring the growth of structure with intensity mapping surveys , 2019, Journal of Cosmology and Astroparticle Physics.

[69]  Graeme Smecher,et al.  Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder , 2014, Astronomical Telescopes and Instrumentation.

[70]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[71]  C. Baugh,et al.  The fate of substructures in cold dark matter haloes , 2008, 0810.2177.

[72]  Christopher M. Hirata,et al.  The foreground wedge and 21-cm BAO surveys , 2015, 1508.06503.

[73]  Yu Feng,et al.  A fast algorithm for identifying Friends-of-Friends halos , 2016, Astron. Comput..

[74]  R. Bower,et al.  The distribution of neutral hydrogen around high-redshift galaxies and quasars in the EAGLE simulation , 2015, 1503.05553.

[75]  M. Zaldarriaga,et al.  21 Centimeter Fluctuations from Cosmic Gas at High Redshifts , 2003, astro-ph/0311514.

[76]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[77]  Martin White,et al.  Beyond the plane-parallel approximation for redshift surveys , 2017, 1709.09730.

[78]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[79]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[80]  Dark matter subhaloes in numerical simulations , 2004, astro-ph/0406034.

[81]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[82]  George D. Becker,et al.  The Giant Gemini GMOS survey of zem > 4.4 quasars – I. Measuring the mean free path across cosmic time , 2014, 1402.4154.

[83]  M. Viel,et al.  Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case , 2016, 1609.00019.

[84]  A. Slosar,et al.  Synergies between radio, optical and microwave observations at high redshift , 2018, Journal of Cosmology and Astroparticle Physics.

[85]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[86]  J. Hennawi,et al.  Evolution of the AGN UV luminosity function from redshift 7.5 , 2018, Monthly Notices of the Royal Astronomical Society.

[87]  Xuelei Chen,et al.  THE TIANLAI PROJECT: A 21CM COSMOLOGY EXPERIMENT , 2012, 1212.6278.

[88]  B. Reid,et al.  Convolution Lagrangian perturbation theory for biased tracers , 2012, 1209.0780.

[89]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[90]  M. White,et al.  The Gaussian streaming model and convolution Lagrangian effective field theory , 2016, 1609.02908.

[91]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[92]  N. Oppermann,et al.  Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities , 2017, 1710.00424.

[93]  David N. Spergel,et al.  Ingredients for 21 cm Intensity Mapping , 2018, The Astrophysical Journal.

[94]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[95]  A. Pontzen,et al.  Cosmological N-body simulations with suppressed variance , 2016, 1603.05253.

[96]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[97]  M. White,et al.  A Lagrangian effective field theory , 2015, 1506.05264.

[98]  P. Ferreira,et al.  Calibrating photometric redshifts with intensity mapping observations , 2017, 1704.01941.

[99]  A. Meiksin,et al.  The physics of the intergalactic medium , 2007, 0711.3358.

[100]  Cathryn M. Trott,et al.  Epoch of reionization window. II. Statistical methods for foreground wedge reduction , 2014, 1404.4372.

[101]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[102]  M. White The Zel'dovich approximation , 2014, 1401.5466.

[103]  Chirag Modi,et al.  Halo bias in Lagrangian Space: Estimators and theoretical predictions , 2016, 1612.01621.

[104]  N. Padmanabhan,et al.  Combining galaxy and 21-cm surveys , 2015, 1511.07377.

[105]  P. Alam ‘K’ , 2021, Composites Engineering.

[106]  Martin J. Rees,et al.  Reionization of the Inhomogeneous Universe , 1998, astro-ph/9812306.