Effects of Noncompliance on the Success of Alternative Designs of Marine Protected‐Area Networks for Conservation and Fisheries Management

: Studies examining the efficacy of marine protected areas (MPAs) rarely consider the potential for noncompliance. Violation of MPAs will typically occur near boundaries, so perimeter-to-area ratios will be important determinants of actual protection, suggesting that MPAs should be larger and likely fewer. If larval dispersal is highly localized, however, MPAs will need to be more numerous, widespread, and likely smaller in order to replenish many fished areas. Thus, there is a discord between the MPA network that would best achieve external replenishment and that which would maximize compliance. I investigated these competing criteria with a spatially structured model of a hypothetical marine fishery exploiting a sedentary reef-dwelling organism. With full compliance, a network of several small MPAs protects a population of similar size to that in a single large MPA and produces higher fishery yield across a range of fishing mortality rates. As noncompliance increases, however, the protected population in the network of several small MPAs approaches zero, whereas the single, large MPA population declines much less. Furthermore, at high levels of fishing mortality and noncompliance, yield with the network of several small MPAs begins to mirror that with no MPAs and drops below the yield with the single large MPA. Temporal variability in both the protected population size and yield are similar between the two designs with full compliance, but the single large MPA provides much greater stability in both metrics at high fishing mortality rates as noncompliance increases. My results highlight the important effects of noncompliance in realized MPA benefits and can explain why observed and expected effects might differ. Moreover, my results support a call for increased attention to rates of noncompliance and their ecological effects and greater collaboration among natural scientists, social scientists, managers, and stakeholders in understanding and altering illegal behavior. Resumen: Los estudios que examinan la eficacia de areas marinas protegidas (AMP) raramente consideran el potencial de incumplimiento. La violacion de AMP tipicamente ocurrira cerca de los limites, por lo que las relaciones perimetro:area seran importantes en la determinacion de la conservacion actual, lo que sugiere que las AMP deben ser mas grandes y posiblemente menos en numero. Sin embargo, si la dispersion larvaria esta muy localizada, las AMP deberan ser mas numerosas, mas dispersas y posiblemente mas pequenas para reestablecer muchas areas pescadas. Por tanto, hay una discordancia entre la red de AMP que mejor logre el reestablecimiento externo y que maximice el cumplimiento. Investigue estos criterios en competencia con el modelo estructurado espacialmente de una pesqueria marina hipotetica que explota a un organismo arrecifal sedentario. Con cumplimiento total, una red de varias AMP pequenas protege una poblacion de tamano similar al de una sola AMP grande y tiene mayor rendimiento pesquero en un rango de tasas de mortalidad por pesca. Sin embargo, a medida que aumenta el incumplimiento, la poblacion protegida en la red de varias AMP pequenas se acerca a cero, mientras que la declinacion de la poblacion en la unica AMP grande es mucho menor. Mas aun, en niveles altos de mortalidad por pesca y de incumplimiento, la produccion en la red de varias AMP pequenas comienza a ser similar a la de sin AMP y cae debajo de la produccion con la unica AMP grande. La variabilidad temporal tanto del tamano como la produccion de la poblacion protegida es similar en los dos disenos con cumplimiento total, pero la unica AMP grande proporciona mucha mas estabilidad en ambas medidas en tasas de mortalidad por pesca altas a medida que aumenta el incumplimiento. Mis resultados resaltan los efectos importantes del incumplimiento sobre los beneficios de AMP y pueden explicar porque pueden diferir los efectos observados y esperados. Mas aun, mis resultados son un llamado para mayor atencion a las tasas de incumplimiento y sus efectos ecologicos y para una mayor colaboracion entre cientificos naturales, sociales, administradores y publico para entender y alterar la conducta ilegal.

[1]  J. Sutinen,et al.  Vessel Entry-Exit Behavior in the Gulf of Mexico Shrimp Fishery , 1994 .

[2]  C. Mora,et al.  Are populations of coral reef fish open or closed , 2002 .

[3]  J. Wilen,et al.  A Bioeconomic Model of Marine Reserve Creation , 2001 .

[4]  Geir Hønneland Compliance in the Barents Sea fisheries. How fishermen account for conformity with rules , 2000 .

[5]  David J. Die,et al.  Dissipation of spatial closure benefits as a result of non-compliance , 1992 .

[6]  P. Doherty Chapter 15 – Variable Replenishment and the Dynamics of Reef Fish Populations , 2002 .

[7]  C. Roberts Selecting marine reserve locations : Optimality versus opportunism , 2000 .

[8]  J. R. Nielsen,et al.  Fisheries co-management: a comparative analysis☆ , 1996 .

[9]  Jianguo Liu,et al.  Integrating ecology with human demography, behavior, and socioeconomics: Needs and approaches , 2001 .

[10]  C. Roberts,et al.  Fisheries benefits and optimal design of marine reserves , 1999 .

[11]  J. Bascompte,et al.  Patchy Populations in Stochastic Environments: Critical Number of Patches for Persistence , 2002, The American Naturalist.

[12]  Option Value of Harvesting: Theory and Evidence , 1998, Marine Resource Economics.

[13]  D. Kramer,et al.  Gradients in coral reef fish density and size across the Barbados Marine Reserve boundary: effects of reserve protection and habitat characteristics , 1999 .

[14]  P. Foley,et al.  Predicting Extinction Times from Environmental Stochasticity and Carrying Capacity , 1994 .

[15]  William J. Furlong,et al.  The Deterrent Effect of Regulatory Enforcement in the Fishery , 1991 .

[16]  M. Sheaves Large lutjanid and serranid fishes in tropical estuaries: Are they adults or juveniles? , 1995 .

[17]  P. Kline,et al.  Use of Random Response to Estimate Angler Noncompliance with Fishing Regulations , 1995 .

[18]  D. Lindenmayer,et al.  INCORPORATING METAPOPULATION DYNAMICS OF GREATER GLIDERS INTO RESERVE DESIGN IN DISTURBED LANDSCAPES , 1999 .

[19]  Harthoorn Am,et al.  Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. III. Age, growth, mortality and maturity indices of Acanthurus nigrofuscus , 1996 .

[20]  Alan Hastings,et al.  The effects of dispersal patterns on marine reserves: does the tail wag the dog? , 2002, Theoretical population biology.

[21]  Isabelle M. Côté,et al.  Effects of marine reserve characteristics on the protection of fish populations: a meta‐analysis , 2001 .

[22]  D. Simberloff,et al.  What do genetics and ecology tell us about the design of nature reserves , 1986 .

[23]  C. Rogers,et al.  Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the US Virgin Islands , 2001, Environmental Conservation.

[24]  G. Jones,et al.  Self-recruitment in a coral reef fish population , 1999, Nature.

[25]  K. Miller SALMON STOCK VARIABILITY AND THE POLITICAL ECONOMY OF THE PACIFIC SALMON TREATY , 1996 .

[26]  Carlos A. Peres,et al.  Amazonian Nature Reserves: An Analysis of the Defensibility Status of Existing Conservation Units and Design Criteria for the Future , 1994 .

[27]  Colin Clark,et al.  Marine Reserves: from Beverton and Holt to the Present , 1998, Reviews in Fish Biology and Fisheries.

[28]  J. Sutinen,et al.  Location choice in New England trawl fisheries: old habits die hard. , 2000 .

[29]  Ransom A. Myers,et al.  Maximum reproductive rate of fish at low population sizes , 1999 .

[30]  P. Sale CHAPTER 16 – The Science We Need to Develop for More Effective Management , 2002 .

[31]  Benjamin S. Halpern,et al.  Marine reserves have rapid and lasting effects , 2002 .

[32]  Bonnie J. McCay,et al.  User participation in fisheries management: lessons drawn from international experiences☆ , 1995 .

[33]  J. Sutinen,et al.  Blue Water Crime: Deterrence, Legitimacy, and Compliance in Fisheries , 1998 .

[34]  J. Sutinen,et al.  The Economics of Fisheries Law Enforcement , 2020, Fisheries Economics.

[35]  S. Jentoft,et al.  From the bottom up: Participatory issues in fisheries management , 1996 .

[36]  J. Caselle,et al.  Larval retention and recruitment in an island population of a coral-reef fish , 1999, Nature.

[37]  Claire B Paris-Limouzy,et al.  Connectivity of marine populations: open or closed? , 2000, Science.

[38]  Hugh P. Possingham,et al.  Population models for marine reserve design: A retrospective and prospective synthesis , 2003 .

[39]  G. Russ Yet another review of marine reserves as reef fishery management tools , 2002 .

[40]  J. Dugan,et al.  Applications of marine refugia to coastal fisheries management , 1993 .

[41]  Benjamin S. Halpern,et al.  Designing Marine Reserve Networks Why Small, Isolated Protected Areas Are Not Enough , 2001 .

[42]  P. Doherty The replenishment of populations of coral reef fishes,recruitment surveys,and the problems of variability manifest on multiple scales , 1987 .

[43]  Tony J. Pitcher,et al.  An age-structured model showing the benefits of marine reserves in controlling overexploitation , 1999 .

[44]  Larry M. Gigliotti,et al.  The Effect of Illegal Harvest on Recreational Fisheries , 1990 .

[45]  J. Bascompte,et al.  The influence of life history attributes and fishing pressure on the efficacy of marine reserves , 2002 .

[46]  S. Jennings,et al.  Seychelles' marine protected areas: Comparative structure and status of reef fish communities , 1996 .

[47]  C. Schonewald-Cox,et al.  The boundary model: A geographical analysis of design and conservation of nature reserves , 1986 .

[48]  P. Sale,et al.  Metapopulation ecology in the sea: from Levins' model to marine ecology and fisheries science , 2004 .

[49]  Tom Polacheck,et al.  YEAR AROUND CLOSED AREAS AS A MANAGEMENT TOOL , 1990 .

[50]  Will F. Figueira,et al.  Source-sink population dynamics and the problem of siting marine reserves , 2000 .

[51]  J. Alder Costs and effectiveness of education and enforcement, Cairns Section of the Great Barrier Reef Marine Park , 1996, Environmental management.

[52]  John C. V. Pezzey,et al.  A simple bioeconomic model of a marine reserve , 2000 .

[53]  Daniel Simberloff,et al.  The Contribution of Population and Community Biology to Conservation Science , 1988 .

[54]  J. Sutinen,et al.  Measuring and explaining noncompliance in federally managed fisheries , 1990 .

[55]  J. Kritzer Variation in the population biology of stripey bass Lutjanus carponotatus within and between two island groups on the Great Barrier Reef , 2002 .

[56]  N. Polunin,et al.  Are marine reserves effective in management of reef fisheries? , 1991, Reviews in Fish Biology and Fisheries.