A local multiobjective optimization algorithm using neighborhood field

A new local search algorithm for multiobjective optimization problems is proposed to find the global optima accurately and diversely. This paper models the cooperatively local search as a potential field, which is called neighborhood field model (NFM). Using NFM, a new Multiobjective Neighborhood Field Optimization (MONFO) algorithm is proposed. In MONFO, the neighborhood field can drive each individual moving towards the superior neighbor and away from the inferior neighbor. MONFO is compared with other popular multiobjective algorithms under twelve test functions. Intensive simulations show that MONFO is able to deliver promising results in the respects of accuracy and diversity, especially for multimodal problems.

[1]  Carlos A. Coello Coello,et al.  HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[2]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[3]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[4]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[5]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[6]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[7]  Carlos García-Martínez,et al.  Memetic Algorithms for Continuous Optimisation Based on Local Search Chains , 2010, Evolutionary Computation.

[8]  Tommy W. S. Chow,et al.  Self-Organizing Potential Field Network: A New Optimization Algorithm , 2010, IEEE Transactions on Neural Networks.

[9]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  Carlos A. Coello Coello,et al.  A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems , 2010, IEEE Transactions on Evolutionary Computation.

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  George S. Dulikravich,et al.  MODIFIED PREDATOR-PREY ( MPP ) ALGORITHM FOR CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION , 2009 .

[13]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[14]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[15]  Xiaolin Hu,et al.  Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[16]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[17]  Arthur C. Sanderson,et al.  Pareto-based multi-objective differential evolution , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[18]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[19]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[21]  Frederico G. Guimarães,et al.  Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria , 2008, Evolutionary Computation.

[22]  Ian Griffin,et al.  Hybrid multiobjective genetic algorithm with a new adaptive local search process , 2005, GECCO '05.

[23]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[24]  Gary B. Lamont,et al.  Applications Of Multi-Objective Evolutionary Algorithms , 2004 .

[25]  Martin Brown,et al.  Effective Use of Directional Information in Multi-objective Evolutionary Computation , 2003, GECCO.

[26]  J. Periaux,et al.  Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems , 2001 .

[27]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[28]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[29]  Pradyumn Kumar Shukla Gradient Based Stochastic Mutation Operators in Evolutionary Multi-objective Optimization , 2007, ICANNGA.

[30]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[31]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications (Advanced Information and Knowledge Processing) , 2005 .

[32]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[33]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[34]  Hussein A. Abbass,et al.  The Pareto Differential Evolution Algorithm , 2002, Int. J. Artif. Intell. Tools.

[35]  Yaochu Jin,et al.  Multi-Objective Machine Learning , 2006, Studies in Computational Intelligence.

[36]  J. D. Schaffer,et al.  Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .

[37]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[38]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[39]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[40]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[41]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.