Modal Probability, Belief, and Actions

We investigate a modal logic of probability with a unary modal operator expressing that a proposition is more probable than its negation. Such an operator is not closed under conjunction, and its modal logic is therefore non-normal. Within this framework we study the relation of probability with other modal concepts: belief and action. We focus on the evolution of belief, and propose an integration of revision. For that framework we give a regression algorithm.

[1]  T. Fine,et al.  Varieties of modal (classificatory) and comparative probability , 1979, Synthese.

[2]  Petr Hájek,et al.  A Fuzzy Modal Logic for Belief Functions , 2001, Fundam. Informaticae.

[3]  Renate A. Schmidt,et al.  Combining Dynamic Logic with Doxastic Modal Logics , 2002, Advances in Modal Logic.

[4]  Andreas Herzig,et al.  Regression in Modal Logic , 2003, J. Appl. Non Class. Logics.

[5]  Alexandru Baltag,et al.  A Logic for Suspicious Players: Epistemic Actions and Belief-Updates in Games , 2000 .

[6]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[7]  Wiebe van der Hoek On the Semantics of Graded Modalities , 1992, J. Appl. Non Class. Logics.

[8]  Joseph Y. Halpern,et al.  Likelihood, probability, and knowledge 1 , 1984, AAAI.

[9]  Theodore Hailperin,et al.  Probability logic , 1984, Notre Dame J. Formal Log..

[10]  Joseph Y. Halpern,et al.  Modeling Belief in Dynamic Systems, Part I: Foundations , 1997, Artif. Intell..

[11]  Hector J. Levesque,et al.  Reasoning about Noisy Sensors in the Situation Calculus , 1995, IJCAI.

[12]  Dominique Longin,et al.  Sensing and revision in a modal logic of belief and action , 2002, ECAI.

[13]  Dominique Longin,et al.  A Logic for Planning under Partial Observability , 2000, AAAI/IAAI.

[14]  Andreas Herzig,et al.  A modal logic for epistemic tests , 2000, ECAI.

[15]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[16]  Raymond Reiter,et al.  The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression , 1991, Artificial and Mathematical Theory of Computation.

[17]  N. Malcolm On Knowledge and Belief , 1954 .

[18]  Renate A. Schmidt,et al.  Multi-agent Logics of Dynamic Belief and Knowledge , 2002, JELIA.

[19]  Luis Fariñas del Cerro,et al.  A modal analysis of possibility theory , 1991, FAIR.

[20]  Jelle Gerbrandy,et al.  Reasoning about Information Change , 1997, J. Log. Lang. Inf..

[21]  J. Gerbrandy Bisimulations on Planet Kripke , 1999 .

[22]  Robert C. Moore A Formal Theory of Knowledge and Action , 1984 .

[23]  Luis Fariñas del Cerro,et al.  A Modal Analysis of Possibility Theory , 1991, ECSQARU.

[24]  Wolfgang Lenzen,et al.  Recent work in epistemic logic , 1978 .

[25]  Hector J. Levesque,et al.  The Frame Problem and Knowledge-Producing Actions , 1993, AAAI.

[26]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[27]  Krister Segerberg,et al.  Qualitative Probability in a Modal Setting , 1971 .

[28]  Joseph Y. Halpern,et al.  A logic to reason about likelihood , 1983, Artif. Intell..

[29]  Jelle Gerbrandy,et al.  Dynamic epistemic logic , 1998 .

[30]  Maurizio Fattorosi-Barnaba,et al.  Graded modalities. I , 1985, Stud Logica.

[31]  Lawrence S. Moss,et al.  The Logic of Public Announcements and Common Knowledge and Private Suspicions , 1998, TARK.

[32]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[33]  Ronald Fagin,et al.  Reasoning about knowledge and probability , 1988, JACM.

[34]  Dominique Longin,et al.  On Modal Probability and Belief , 2003, ECSQARU.