Complete subdivision algorithms, II: isotopic meshing of singular algebraic curves

Given a real function f(X,Y), a box region B and ε>0, we want to compute an ε-isotopic polygonal approximation to the curve C: f(X,Y)=0 within B. We focus on subdivision algorithms because of their adaptive complexity. Plantinga & Vegter (2004) gave a numerical subdivision algorithm that is exact when the curve C is non-singular. They used a computational model that relies only on function evaluation and interval arithmetic. We generalize their algorithm to any (possibly non-simply connected) region B that does not contain singularities of C. With this generalization as subroutine, we provide a method to detect isolated algebraic singularities and their branching degree. This appears to be the first complete numerical method to treat implicit algebraic curves with isolated singularities.

[1]  Raimund Seidel,et al.  On the exact computation of the topology of real algebraic curves , 2005, SCG.

[2]  Simon Plantinga,et al.  Certified algorithms for implicit surfaces , 2007 .

[3]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[4]  Xiao-Shan Gao,et al.  Complete numerical isolation of real roots in zero-dimensional triangular systems , 2009, J. Symb. Comput..

[5]  John M. Snyder,et al.  Interval analysis for computer graphics , 1992, SIGGRAPH.

[6]  J. Boissonnat,et al.  Provably good sampling and meshing of Lipschitz surfaces , 2006, SCG '06.

[7]  Jean-Daniel Boissonnat,et al.  Isotopic Implicit Surface Meshing , 2004, STOC '04.

[8]  Xiao-Shan Gao,et al.  Complete numerical isolation of real zeros in zero-dimensional triangular systems , 2007, ISSAC '07.

[9]  Zilin Du,et al.  Uniform complexity of approximating hypergeometric functions with absolute error , 2006 .

[10]  Chee-Keng Yap Complete subdivision algorithms, I: intersection of Bezier curves , 2006, SCG '06.

[11]  S. Łojasiewicz Introduction to Complex Analytic Geometry , 1991 .

[12]  Y. Jabri The Mountain Pass Theorem: Variants, Generalizations and Some Applications , 2003 .

[13]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[14]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[15]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[16]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[17]  Elmar Schömer,et al.  An exact and efficient approach for computing a cell in an arrangement of quadrics , 2004, Comput. Geom..

[18]  Tamal K. Dey,et al.  Sampling and meshing a surface with guaranteed topology and geometry , 2004, SCG '04.

[19]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[20]  Chee-Keng Yap,et al.  Continuous Amortization: A Non-Probabilistic Adaptive Analysis Technique , 2009, Electron. Colloquium Comput. Complex..

[21]  B. Mourrain,et al.  Meshing of Surfaces , 2006 .

[22]  T. Willmore Algebraic Geometry , 1973, Nature.

[23]  Xiao-Shan Gao,et al.  Complete Numerical Isolation of Real Zeros in General Triangular Systems∗ , 2007 .

[24]  John M. Snyder,et al.  Generative Modeling for Computer Graphics and Cad: Symbolic Shape Design Using Interval Analysis , 1992 .

[25]  Chee-Keng Yap,et al.  Adaptive isotopic approximation of nonsingular curves: the parametrizability and nonlocal isotopy approach , 2009, SCG '09.

[26]  B. Mourrain,et al.  Isotopic meshing of a real algebraic surface , 2006 .

[27]  Chee-Keng Yap,et al.  Lower bounds for zero-dimensional projections , 2009, ISSAC '09.

[28]  Gert Vegter,et al.  Isotopic approximation of implicit curves and surfaces , 2004, SGP '04.

[29]  Harold R. Parks,et al.  A Primer of Real Analytic Functions , 1992 .

[30]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .