Even permutations as a product of two elements of order five

Abstract Let An denote the alternating group on n symbols. If n = 5, 6, 7, 10, 11, 12, 13 or n ⩾ 15, every permutation in An is the product of two elements of order 5 in An. The same is true for n ⩽ 14, except for thirteen types of permutations, namely 31, 22, 24, 33, 213141, 2251, 2541, 11, 12, 13, 14, 3111, 2411. (For example, the permutation (12)(34)(56)(78)(9) is not the product of two elements of order 5 in A9.)